Sparse Large-Scale Fading Decoding in Cell-Free Massive MIMO Systems

Shuaifei Chen, Jiayi Zhang, Emil Björnson, Ozlem Tugfe Demir, B. Ai
{"title":"Sparse Large-Scale Fading Decoding in Cell-Free Massive MIMO Systems","authors":"Shuaifei Chen, Jiayi Zhang, Emil Björnson, Ozlem Tugfe Demir, B. Ai","doi":"10.48550/arXiv.2205.02733","DOIUrl":null,"url":null,"abstract":"Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cell-free massive multiple-input multiple-output (CF mMIMO) systems are characterized by having many more access points (APs) than user equipments (UEs). A key challenge is to determine which APs should serve which UEs. Previous work has tackled this combinatorial problem heuristically. This paper proposes a sparse large-scale fading decoding (LSFD) design for CF mMIMO to jointly optimize the association and LSFD. We formulate a group sparsity problem and then solve it using a proximal algorithm with block-coordinate descent. Numerical results show that sparse LSFD achieves almost the same spectral efficiency as optimal LSFD, thus achieving a higher energy efficiency since the processing and signaling are reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
无小区大规模MIMO系统中的稀疏大规模衰落解码
无单元大规模多输入多输出(CF mMIMO)系统的特点是具有比用户设备(ue)更多的接入点(ap)。一个关键的挑战是确定哪些ap应该服务于哪些ue。以前的工作已经启发式地解决了这个组合问题。本文提出了一种CF mimo的稀疏大规模衰落解码(LSFD)设计,以共同优化关联和LSFD。我们提出了一个群稀疏性问题,然后使用一种具有块坐标下降的近端算法来求解它。数值结果表明,稀疏LSFD的频谱效率与最优LSFD几乎相同,由于减少了处理和信令,因此获得了更高的能量效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1