Unsupervised Sounding Object Localization with Bottom-Up and Top-Down Attention

Jiaying Shi, Chao Ma
{"title":"Unsupervised Sounding Object Localization with Bottom-Up and Top-Down Attention","authors":"Jiaying Shi, Chao Ma","doi":"10.1109/WACV51458.2022.00222","DOIUrl":null,"url":null,"abstract":"Learning to localize sounding objects in visual scenes without manual annotations has drawn increasing attention recently. In this paper, we propose an unsupervised sounding object localization algorithm by using bottom-up and top-down attention in visual scenes. The bottom-up attention module generates an objectness confidence map, while the top-down attention draws the similarity between sound and visual regions. Moreover, we propose a bottom-up attention loss function, which models the correlation relationship between bottom-up and top-down attention. Extensive experimental results demonstrate that our proposed unsupervised method significantly advances the state-of-the-art unsupervised methods. The source code is available at https://github.com/VISION-SJTU/USOL.","PeriodicalId":297092,"journal":{"name":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV51458.2022.00222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Learning to localize sounding objects in visual scenes without manual annotations has drawn increasing attention recently. In this paper, we propose an unsupervised sounding object localization algorithm by using bottom-up and top-down attention in visual scenes. The bottom-up attention module generates an objectness confidence map, while the top-down attention draws the similarity between sound and visual regions. Moreover, we propose a bottom-up attention loss function, which models the correlation relationship between bottom-up and top-down attention. Extensive experimental results demonstrate that our proposed unsupervised method significantly advances the state-of-the-art unsupervised methods. The source code is available at https://github.com/VISION-SJTU/USOL.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自底向上和自顶向下注意的无监督探测目标定位
如何在不需要人工标注的情况下对视觉场景中的发声物体进行定位,近年来受到越来越多的关注。本文提出了一种基于自底向上和自顶向下的视觉场景无监督探测目标定位算法。自下而上的注意模块生成对象置信度图,而自上而下的注意模块绘制声音和视觉区域之间的相似性。此外,我们提出了一个自下而上的注意损失函数,该函数模拟了自下而上和自上而下的注意之间的相关关系。大量的实验结果表明,我们提出的无监督方法显着提高了最先进的无监督方法。源代码可从https://github.com/VISION-SJTU/USOL获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Learning for Human Sensing Using Radio Signals AirCamRTM: Enhancing Vehicle Detection for Efficient Aerial Camera-based Road Traffic Monitoring QUALIFIER: Question-Guided Self-Attentive Multimodal Fusion Network for Audio Visual Scene-Aware Dialog Transductive Weakly-Supervised Player Detection using Soccer Broadcast Videos Inpaint2Learn: A Self-Supervised Framework for Affordance Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1