{"title":"Opportunistic scheduling for network coded data in wireless multicast networks","authors":"Nadieh Moghadam, M. Mohebbi, Hongxiang Li","doi":"10.1109/ICCNC.2017.7876270","DOIUrl":null,"url":null,"abstract":"In this paper queue stability in a single-hop wireless multicast networks over erasure channels is analyzed. First, a queuing model consisting of several sub-queues is introduced. Under the queueing stability constraint, we adopt Lyapunov optimization model and define decision variables to derive a network coding based packet scheduling algorithm, which has significantly less complexity and shorter queue size compared with the existing solutions. Further, the proposed algorithm is modified to meet the requirements of time-critical data. Finally, the simulation results verify the effectiveness of our proposed algorithm.","PeriodicalId":135028,"journal":{"name":"2017 International Conference on Computing, Networking and Communications (ICNC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Computing, Networking and Communications (ICNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCNC.2017.7876270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper queue stability in a single-hop wireless multicast networks over erasure channels is analyzed. First, a queuing model consisting of several sub-queues is introduced. Under the queueing stability constraint, we adopt Lyapunov optimization model and define decision variables to derive a network coding based packet scheduling algorithm, which has significantly less complexity and shorter queue size compared with the existing solutions. Further, the proposed algorithm is modified to meet the requirements of time-critical data. Finally, the simulation results verify the effectiveness of our proposed algorithm.