Detecting Malicious Web Requests Using an Enhanced TextCNN

Lian Yu, Lihao Chen, Jingtao Dong, Mengyuan Li, Lijun Liu, B. Zhao, Chen Zhang
{"title":"Detecting Malicious Web Requests Using an Enhanced TextCNN","authors":"Lian Yu, Lihao Chen, Jingtao Dong, Mengyuan Li, Lijun Liu, B. Zhao, Chen Zhang","doi":"10.1109/COMPSAC48688.2020.0-167","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach that combines a deep learning-based method and a traditional machine learning-based method to efficiently detect malicious requests Web servers received. The first few layers of Convolutional Neural Network for Text Classification (TextCNN) are used to automatically extract powerful semantic features and in the meantime transferable statistical features are defined to boost the detection ability, specifically Web request parameter tampering. The semantic features from TextCNN and transferable statistical features from artificially-designing are grouped together to be fed into Support Vector Machine (SVM), replacing the last layer of TextCNN for classification. To facilitate the understanding of abstract features in form of numerical data in vectors extracted by TextCNN, this paper designs trace-back functions that map max-pooling outputs back to words in Web requests. After investigating the current available datasets for Web attack detection, HTTP Dataset CSIC 2010 is selected to test and verify the proposed approach. Compared with other deep learning models, the experimental results demonstrate that the approach proposed in this paper is competitive with the state-of-the-art.","PeriodicalId":430098,"journal":{"name":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMPSAC48688.2020.0-167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes an approach that combines a deep learning-based method and a traditional machine learning-based method to efficiently detect malicious requests Web servers received. The first few layers of Convolutional Neural Network for Text Classification (TextCNN) are used to automatically extract powerful semantic features and in the meantime transferable statistical features are defined to boost the detection ability, specifically Web request parameter tampering. The semantic features from TextCNN and transferable statistical features from artificially-designing are grouped together to be fed into Support Vector Machine (SVM), replacing the last layer of TextCNN for classification. To facilitate the understanding of abstract features in form of numerical data in vectors extracted by TextCNN, this paper designs trace-back functions that map max-pooling outputs back to words in Web requests. After investigating the current available datasets for Web attack detection, HTTP Dataset CSIC 2010 is selected to test and verify the proposed approach. Compared with other deep learning models, the experimental results demonstrate that the approach proposed in this paper is competitive with the state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用增强的TextCNN检测恶意Web请求
本文提出了一种将基于深度学习的方法与传统的基于机器学习的方法相结合的方法来有效检测Web服务器收到的恶意请求。文本分类卷积神经网络(TextCNN)的前几层用于自动提取强大的语义特征,同时定义可转移的统计特征以提高检测能力,特别是Web请求参数篡改。将TextCNN的语义特征和人工设计的可转移统计特征组合在一起,输入支持向量机(SVM),取代TextCNN的最后一层进行分类。为了便于理解TextCNN提取的向量中数值数据形式的抽象特征,本文设计了回溯函数,将最大池化输出映射回Web请求中的单词。在研究了当前可用的Web攻击检测数据集之后,选择了HTTP数据集CSIC 2010来测试和验证所提出的方法。与其他深度学习模型相比,实验结果表明本文提出的方法具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The European Concept of Smart City: A Taxonomic Analysis An Early Warning System for Hemodialysis Complications Utilizing Transfer Learning from HD IoT Dataset A Systematic Literature Review of Practical Virtual and Augmented Reality Solutions in Surgery Optimization of Parallel Applications Under CPU Overcommitment A Blockchain Token Economy Model for Financing a Decentralized Electric Vehicle Charging Platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1