Uzbek traffic sign dataset for traffic sign detection and recognition systems

U. Khamdamov, M. Umarov, Jamshid Elov, Sirojiddin Khalilov, Inomjon Narzullayev
{"title":"Uzbek traffic sign dataset for traffic sign detection and recognition systems","authors":"U. Khamdamov, M. Umarov, Jamshid Elov, Sirojiddin Khalilov, Inomjon Narzullayev","doi":"10.1109/ICISCT55600.2022.10146832","DOIUrl":null,"url":null,"abstract":"Currently, deep learning algorithms are developing in machine learning and deep neural networks. However, deep learning algorithms still have pressing problems to solve. That is, the data set is insufficient and of low quality for machine learning. One of the ways to solve this problem is to data augmentation the dataset. There are two types of image data sets: labeled data sets and unlabeled data sets. These annotations are important for object recognition. Deep learning algorithms typically use an annotated dataset. Similarly, the You Only Look Once (YOLOv5) network model also requires an annotated dataset. In this article, we manually created annotations for each image using the labelImg software tool. Different countries have different Traffic signs. The dataset of traffic signs of Uzbekistan (UTSD) has not yet been developed. Therefore, in this work, we developed a UTSD dataset for use in a traffic sign detection and recognition system (TSDR). The UTSD dataset contains 3957 Traffic sign images belonging to 56 classes. We improved the UTSD dataset by data augmentation.","PeriodicalId":332984,"journal":{"name":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Information Science and Communications Technologies (ICISCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISCT55600.2022.10146832","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, deep learning algorithms are developing in machine learning and deep neural networks. However, deep learning algorithms still have pressing problems to solve. That is, the data set is insufficient and of low quality for machine learning. One of the ways to solve this problem is to data augmentation the dataset. There are two types of image data sets: labeled data sets and unlabeled data sets. These annotations are important for object recognition. Deep learning algorithms typically use an annotated dataset. Similarly, the You Only Look Once (YOLOv5) network model also requires an annotated dataset. In this article, we manually created annotations for each image using the labelImg software tool. Different countries have different Traffic signs. The dataset of traffic signs of Uzbekistan (UTSD) has not yet been developed. Therefore, in this work, we developed a UTSD dataset for use in a traffic sign detection and recognition system (TSDR). The UTSD dataset contains 3957 Traffic sign images belonging to 56 classes. We improved the UTSD dataset by data augmentation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乌兹别克交通标志数据集,用于交通标志检测和识别系统
目前,深度学习算法正在机器学习和深度神经网络中发展。然而,深度学习算法仍然有迫切需要解决的问题。也就是说,对于机器学习来说,数据集是不够的,质量也很低。解决这个问题的方法之一是对数据集进行数据扩充。有两种类型的图像数据集:标记数据集和未标记数据集。这些注释对于对象识别非常重要。深度学习算法通常使用带注释的数据集。类似地,You Only Look Once (YOLOv5)网络模型也需要一个带注释的数据集。在本文中,我们使用labelImg软件工具手动为每个图像创建注释。不同的国家有不同的交通标志。乌兹别克斯坦的交通标志数据集(UTSD)尚未开发。因此,在这项工作中,我们开发了一个用于交通标志检测和识别系统(TSDR)的UTSD数据集。UTSD数据集包含属于56个类的3957个交通标志图像。我们通过数据增强改进了UTSD数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self heating and DIBL effects in 2D MoS2 based MOSFET with different gate oxide and back oxide materials Memristors: types, characteristics and prospects of use as the main element of the future artificial intelligence An algorithm for parallel processing of traffic signs video on a graphics processor Nonlinear transformations of different type features and the choice of latent space based on them 2D Adiabatic CA Rules over ℤp
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1