On the influence of denoising in PRNU based forgery detection

MiFor '10 Pub Date : 2010-10-29 DOI:10.1145/1877972.1878002
G. Chierchia, S. Parrilli, G. Poggi, Carlo Sansone, L. Verdoliva
{"title":"On the influence of denoising in PRNU based forgery detection","authors":"G. Chierchia, S. Parrilli, G. Poggi, Carlo Sansone, L. Verdoliva","doi":"10.1145/1877972.1878002","DOIUrl":null,"url":null,"abstract":"To detect some image forgeries one can rely on the Photo-Response Non-Uniformity (PRNU), a deterministic pattern associated with each individual camera, which can be loosely modeled as low-intensity multiplicative noise. A very promising algorithm for PRNU-based forgery detection has been recently proposed by Chen et al. Image denoising is a key step of the algorithm, since it allows to single out and remove most of the signal components and reveal the PRNU pattern. In this work we analyze the influence of denoising on the overall performance of the method and show that the use of a suitable state-of-the art denoising technique improves performance appreciably w.r.t. the original algorithm.","PeriodicalId":355677,"journal":{"name":"MiFor '10","volume":"122 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"76","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MiFor '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1877972.1878002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 76

Abstract

To detect some image forgeries one can rely on the Photo-Response Non-Uniformity (PRNU), a deterministic pattern associated with each individual camera, which can be loosely modeled as low-intensity multiplicative noise. A very promising algorithm for PRNU-based forgery detection has been recently proposed by Chen et al. Image denoising is a key step of the algorithm, since it allows to single out and remove most of the signal components and reveal the PRNU pattern. In this work we analyze the influence of denoising on the overall performance of the method and show that the use of a suitable state-of-the art denoising technique improves performance appreciably w.r.t. the original algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
去噪对基于PRNU的伪造检测的影响
为了检测一些图像伪造,人们可以依赖于光响应非均匀性(PRNU),这是一种与每个单独相机相关的确定性模式,可以松散地建模为低强度乘法噪声。Chen等人最近提出了一种非常有前途的基于prnu的伪造检测算法。图像去噪是算法的关键步骤,因为它允许挑选和去除大多数信号分量并显示PRNU模式。在这项工作中,我们分析了去噪对该方法整体性能的影响,并表明使用合适的最先进的去噪技术可以比原始算法显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
When multimedia meets surveillance and forensics in people security Privacy preserving video surveillance using pedestrian tracking mechanism A game-theoretic system security design for the visible watermarking Videntifier" Forensic: large-scale video identification in practice Imputing human descriptions in semantic biometrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1