Delay insensitive code-based timing and soft error-resilient and adaptive-performance logic

Bao Liu, Xuemei Chen, F. Teshome
{"title":"Delay insensitive code-based timing and soft error-resilient and adaptive-performance logic","authors":"Bao Liu, Xuemei Chen, F. Teshome","doi":"10.1109/ISQED.2012.6187475","DOIUrl":null,"url":null,"abstract":"Nanoscale VLSI systems are subject to increasingly prevalent catastrophic defects, soft errors, and significant parametric variations, which cannot be reduced below certain levels according to quantum physics, and must be handled by new design methods. In this paper, we leverage the existing fault-secure logic design techniques, and propose resilient and adaptive-performance (RAP) logic based on delay-insensitive (DI) code and inversion-free logic. RAP logic clears all timing errors and achieves adaptive maximum performance in the absence of external soft errors at a higher area/power cost compared with the existing logic paradigms. Our experimental results further demonstrate that dual-rail static (Domino) RAP logic outperforms alternative delay-insensitive (DI) code-based static (Domino) RAP logic with less area, higher performance and lower power consumption in all test cases, and achieves an average of 2.29(2.41)× performance boost, 2.12(1.91)× layout area and 2.38(2.34)× power consumption compared with the traditional minimum area static logic based on the Nangate 45nm open cell library.","PeriodicalId":205874,"journal":{"name":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thirteenth International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED.2012.6187475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale VLSI systems are subject to increasingly prevalent catastrophic defects, soft errors, and significant parametric variations, which cannot be reduced below certain levels according to quantum physics, and must be handled by new design methods. In this paper, we leverage the existing fault-secure logic design techniques, and propose resilient and adaptive-performance (RAP) logic based on delay-insensitive (DI) code and inversion-free logic. RAP logic clears all timing errors and achieves adaptive maximum performance in the absence of external soft errors at a higher area/power cost compared with the existing logic paradigms. Our experimental results further demonstrate that dual-rail static (Domino) RAP logic outperforms alternative delay-insensitive (DI) code-based static (Domino) RAP logic with less area, higher performance and lower power consumption in all test cases, and achieves an average of 2.29(2.41)× performance boost, 2.12(1.91)× layout area and 2.38(2.34)× power consumption compared with the traditional minimum area static logic based on the Nangate 45nm open cell library.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于延迟不敏感代码的定时和软错误弹性和自适应性能逻辑
纳米级超大规模集成电路系统受到日益普遍的灾难性缺陷、软误差和显著的参数变化的影响,这些缺陷无法根据量子物理降低到一定水平以下,必须采用新的设计方法来处理。本文利用现有的故障安全逻辑设计技术,提出了基于延迟不敏感(DI)代码和无反转逻辑的弹性和自适应性能(RAP)逻辑。RAP逻辑清除所有定时错误,并在没有外部软错误的情况下实现自适应最大性能,与现有逻辑范例相比,其面积/功耗成本更高。我们的实验结果进一步表明,在所有测试用例中,双轨静态(Domino) RAP逻辑都优于基于DI代码的替代延迟不敏感(DI)静态(Domino) RAP逻辑,具有更小的面积、更高的性能和更低的功耗,与基于Nangate 45nm开放单元库的传统最小面积静态逻辑相比,平均实现了2.29(2.41)倍的性能提升、2.12(1.91)倍的布局面积和2.38(2.34)倍的功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated correction of design errors by edge redirection on High-Level Decision Diagrams A variation and energy aware ILP formulation for task scheduling in MPSoC Chip-package power delivery network resonance analysis and co-design using time and frequency domain analysis techniques Test structure, circuits and extraction methods to determine the radius of infuence of STI and polysilicon pattern density History & Variation Trained Cache (HVT-Cache): A process variation aware and fine grain voltage scalable cache with active access history monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1