H. Fakhruddin, Handri Toar, Era Purwanto, Hary Oktavianto, Gamar Basuki, R. Apriyanto, Abdillah Aziz Muntashir
{"title":"Strategi Implementasi Adaptive Neuro Fuzzy Inference System (ANFIS) pada Kendali Motor Induksi 3 Fase Metode Vektor-Tidak Langsung","authors":"H. Fakhruddin, Handri Toar, Era Purwanto, Hary Oktavianto, Gamar Basuki, R. Apriyanto, Abdillah Aziz Muntashir","doi":"10.26760/elkomika.v9i4.786","DOIUrl":null,"url":null,"abstract":"ABSTRAKKendali vektor merupakan solusi terbaik dalam kendali motor induksi untuk meningkatkan karakter dinamis dan efisiensinya. Pada penelitian ini, sebuah kendali kecepatan PID dipadukan dengan Adaptive Neuro Fuzzy Inference System (ANFIS) untuk meningkatkan keandalan pada berbagai kecepatan acuan. Metode cerdas Particle Swarm Optimization (PSO) digunakan untuk optimasi dataset ANFIS. Pengujian keandalan dilakukan dengan membandingkan PID konvensional dengan PID-ANFIS pada motor induksi 3 fase berdaya 2HP. Validasi penelitian dilakukan melalui simulasi di platform LabView. PID-ANFIS membuktikan hasil yang jauh lebih baik dari kendali PID konvensional pada berbagai kecepatan acuan. Pemilihan rise time tercepat sebagai fungsi fitness menghasilkan kendali yang memiliki dead time dan rise time 1.5x lebih cepat. PID-ANFIS berhasil menghilangkan undershoot dan osilasi steady state ketika uji kecepatan tinggi.Kata kunci: Kendali Vektor, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView ABSTRACTVector control is the best solution in induction motor control to enhance its dynamic character and efficiency. In this research, a PID speed controller is combined with the Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance reliability at various reference speeds. The intelligent method Particle Swarm Optimization (PSO) is used to optimize the ANFIS dataset. Reliability testing is done by comparing conventional PID with PID-ANFIS on a 2HP 3-phase induction motor. The research validation was carried out through a simulation on the LabView platform. The PID-ANFIS proved significantly better results than conventional PID control at a wide range of reference speeds. Selection of the fastest rise time as a fitness function results in a control that has a dead time and a rise time of 1.5x faster. PID-ANFIS successfully negates undershoot and steadystate oscillations during high-speed tests.Keywords: Vector Control, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView","PeriodicalId":344430,"journal":{"name":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26760/elkomika.v9i4.786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRAKKendali vektor merupakan solusi terbaik dalam kendali motor induksi untuk meningkatkan karakter dinamis dan efisiensinya. Pada penelitian ini, sebuah kendali kecepatan PID dipadukan dengan Adaptive Neuro Fuzzy Inference System (ANFIS) untuk meningkatkan keandalan pada berbagai kecepatan acuan. Metode cerdas Particle Swarm Optimization (PSO) digunakan untuk optimasi dataset ANFIS. Pengujian keandalan dilakukan dengan membandingkan PID konvensional dengan PID-ANFIS pada motor induksi 3 fase berdaya 2HP. Validasi penelitian dilakukan melalui simulasi di platform LabView. PID-ANFIS membuktikan hasil yang jauh lebih baik dari kendali PID konvensional pada berbagai kecepatan acuan. Pemilihan rise time tercepat sebagai fungsi fitness menghasilkan kendali yang memiliki dead time dan rise time 1.5x lebih cepat. PID-ANFIS berhasil menghilangkan undershoot dan osilasi steady state ketika uji kecepatan tinggi.Kata kunci: Kendali Vektor, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView ABSTRACTVector control is the best solution in induction motor control to enhance its dynamic character and efficiency. In this research, a PID speed controller is combined with the Adaptive Neuro-Fuzzy Inference System (ANFIS) to enhance reliability at various reference speeds. The intelligent method Particle Swarm Optimization (PSO) is used to optimize the ANFIS dataset. Reliability testing is done by comparing conventional PID with PID-ANFIS on a 2HP 3-phase induction motor. The research validation was carried out through a simulation on the LabView platform. The PID-ANFIS proved significantly better results than conventional PID control at a wide range of reference speeds. Selection of the fastest rise time as a fitness function results in a control that has a dead time and a rise time of 1.5x faster. PID-ANFIS successfully negates undershoot and steadystate oscillations during high-speed tests.Keywords: Vector Control, Adaptive Neuro Fuzzy Inference System, Particle Swarm Optimization, LabView