A Temporal Statistics Model For UGC Video Quality Prediction

Zhengzhong Tu, Chia-Ju Chen, Yilin Wang, N. Birkbeck, Balu Adsumilli, A. Bovik
{"title":"A Temporal Statistics Model For UGC Video Quality Prediction","authors":"Zhengzhong Tu, Chia-Ju Chen, Yilin Wang, N. Birkbeck, Balu Adsumilli, A. Bovik","doi":"10.1109/ICIP42928.2021.9506669","DOIUrl":null,"url":null,"abstract":"Blind video quality assessment of user-generated content (UGC) has become a trending and challenging problem. Previous studies have shown the efficacy of natural scene statistics for capturing spatial distortions. The exploration of temporal video statistics on UGC, however, is relatively limited. Here we propose the first general, effective and efficient temporal statistics model accounting for temporal- or motion-related distortions for UGC video quality assessment, by analyzing regularities in the temporal bandpass domain. The proposed temporal model can serve as a plug-in module to boost existing no-reference video quality predictors that lack motion-relevant features. Our experimental results on recent large-scale UGC video databases show that the proposed model can significantly improve the performances of existing methods, at a very reasonable computational expense.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Blind video quality assessment of user-generated content (UGC) has become a trending and challenging problem. Previous studies have shown the efficacy of natural scene statistics for capturing spatial distortions. The exploration of temporal video statistics on UGC, however, is relatively limited. Here we propose the first general, effective and efficient temporal statistics model accounting for temporal- or motion-related distortions for UGC video quality assessment, by analyzing regularities in the temporal bandpass domain. The proposed temporal model can serve as a plug-in module to boost existing no-reference video quality predictors that lack motion-relevant features. Our experimental results on recent large-scale UGC video databases show that the proposed model can significantly improve the performances of existing methods, at a very reasonable computational expense.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
UGC视频质量预测的时间统计模型
用户生成内容(UGC)视频质量的盲目评估已经成为一个趋势和挑战问题。以前的研究已经证明了自然场景统计在捕捉空间扭曲方面的有效性。然而,对UGC的时间视频统计的探索相对有限。本文通过分析时间带通域的规律,提出了第一个通用的、有效的、高效的用于UGC视频质量评估的时间或运动相关失真的时间统计模型。提出的时间模型可以作为一个插件模块来增强现有的缺乏运动相关特征的无参考视频质量预测器。我们在最近的大规模UGC视频数据库上的实验结果表明,所提出的模型可以在非常合理的计算成本下显著提高现有方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1