{"title":"Comparing regressors selection methods for the Soft Sensor design of a Sulfur Recovery Unit","authors":"L. Fortuna, S. Graziani, M. Xibilia, G. Napoli","doi":"10.1109/MED.2006.328855","DOIUrl":null,"url":null,"abstract":"The paper proposes a comparison of different strategies of regressors selection for the design of a soft sensor for a sulfur recovery unit of a refinery. The soft sensor is designed to replace the on line analyzer during maintenance and it is designed by using nonlinear MA models implemented by a MLP neural network. A number of strategies for the automatic choice of influent input variables and regressors selection, on the basis of available experimental data, are compared with a strategy based on a trial and error approach, guided by the knowledge of the experts, both in terms of their performance and their computational complexity","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
The paper proposes a comparison of different strategies of regressors selection for the design of a soft sensor for a sulfur recovery unit of a refinery. The soft sensor is designed to replace the on line analyzer during maintenance and it is designed by using nonlinear MA models implemented by a MLP neural network. A number of strategies for the automatic choice of influent input variables and regressors selection, on the basis of available experimental data, are compared with a strategy based on a trial and error approach, guided by the knowledge of the experts, both in terms of their performance and their computational complexity