Improving Visual- Inertial Odometry with Robust Outlier Rejection and Loop Closure

Chenxin Jia, Ying Cao, Jian Yang, Y. Rao, H. Fan, Wenlin Yao
{"title":"Improving Visual- Inertial Odometry with Robust Outlier Rejection and Loop Closure","authors":"Chenxin Jia, Ying Cao, Jian Yang, Y. Rao, H. Fan, Wenlin Yao","doi":"10.1109/iCAST51195.2020.9319474","DOIUrl":null,"url":null,"abstract":"In order to obtain more accurate pose estimation, the visual-inertial odometry (VIO) system with outlier rejection and loop closure is proposed in this paper. Considering that feature matching is an important part in the front-end of the VIO system, its accuracy will affect the performance of the entire system. So we introduce an outlier rejection method of the grid-based motion statistics (GMS) algorithm to the VIO system. And for more robust feature correspondence and better camera pose estimation, we propose an improved GMS method to eliminate the mismatched points. Besides, we adopt the loop closure strategy to correct the cumulative error of the VIO system. Finally, we estimate the camera pose, velocity and IMU bias simultaneously by minimizing the loss function which contains reprojection error and IMU error. A large number of experiments on EuRoC demonstrate that the proposed method outperforms the advanced VIO system ROVIO and is comparable to the state-of-the-art VIO system OKVIS.","PeriodicalId":212570,"journal":{"name":"2020 11th International Conference on Awareness Science and Technology (iCAST)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 11th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iCAST51195.2020.9319474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In order to obtain more accurate pose estimation, the visual-inertial odometry (VIO) system with outlier rejection and loop closure is proposed in this paper. Considering that feature matching is an important part in the front-end of the VIO system, its accuracy will affect the performance of the entire system. So we introduce an outlier rejection method of the grid-based motion statistics (GMS) algorithm to the VIO system. And for more robust feature correspondence and better camera pose estimation, we propose an improved GMS method to eliminate the mismatched points. Besides, we adopt the loop closure strategy to correct the cumulative error of the VIO system. Finally, we estimate the camera pose, velocity and IMU bias simultaneously by minimizing the loss function which contains reprojection error and IMU error. A large number of experiments on EuRoC demonstrate that the proposed method outperforms the advanced VIO system ROVIO and is comparable to the state-of-the-art VIO system OKVIS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用鲁棒离群抑制和闭环改进视觉惯性里程计
为了获得更精确的姿态估计,本文提出了一种具有离群值抑制和闭环的视觉惯性里程计(VIO)系统。特征匹配是VIO系统前端的重要组成部分,其准确性将影响整个系统的性能。因此,我们将基于网格的运动统计(GMS)算法中的异常值抑制方法引入到VIO系统中。为了获得更好的特征对应和更好的相机姿态估计,我们提出了一种改进的GMS方法来消除不匹配点。此外,我们采用闭环策略来修正VIO系统的累积误差。最后,通过最小化包含重投影误差和IMU误差的损失函数,同时估计相机姿态、速度和IMU偏差。在EuRoC上的大量实验表明,所提出的方法优于先进的VIO系统ROVIO,并可与最先进的VIO系统OKVIS相媲美。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skeleton Guided Conflict-Free Hand Gesture Recognition for Robot Control Improved Spiking Neural Networks with multiple neurons for digit recognition A Lightweight Transformer with Convolutional Attention Social Media Mining with Dynamic Clustering: A Case Study by COVID-19 Tweets A Visual-SLAM based Line Laser Scanning System using Semantically Segmented Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1