Optimization of Schizophrenia Diagnosis Prediction using Machine Learning Techniques

Anant V. Nimkar, Divesh R. Kubal
{"title":"Optimization of Schizophrenia Diagnosis Prediction using Machine Learning Techniques","authors":"Anant V. Nimkar, Divesh R. Kubal","doi":"10.1109/ICCOINS.2018.8510599","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to automatically diagnose the mental state disorder named schizophrenia by using multimodal features which are extracted from Magnetic Resonance Imaging (MRI) brain scans. The aim is to achieve highest possible classification (binary) accuracy to achieve best possible prediction of the schizophrenia diagnosis. The importance of feature selection in combination with fine-tuning the parameters of Machine Learning classifiers to solve this problem is explained. Various supervised Machine Learning classifiers were employed and compared with themselves and then with existing systems. The proposed solution achieved AUC score of 0.9473 and an accuracy of 0.9412 as opposed to till date best existing system’s AUC score of 0.928.","PeriodicalId":168165,"journal":{"name":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 4th International Conference on Computer and Information Sciences (ICCOINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCOINS.2018.8510599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The objective of this paper is to automatically diagnose the mental state disorder named schizophrenia by using multimodal features which are extracted from Magnetic Resonance Imaging (MRI) brain scans. The aim is to achieve highest possible classification (binary) accuracy to achieve best possible prediction of the schizophrenia diagnosis. The importance of feature selection in combination with fine-tuning the parameters of Machine Learning classifiers to solve this problem is explained. Various supervised Machine Learning classifiers were employed and compared with themselves and then with existing systems. The proposed solution achieved AUC score of 0.9473 and an accuracy of 0.9412 as opposed to till date best existing system’s AUC score of 0.928.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习技术优化精神分裂症诊断预测
本文的目的是利用磁共振成像(MRI)脑扫描提取的多模态特征对精神分裂症进行自动诊断。目的是达到最高可能的分类(二元)准确性,以实现对精神分裂症诊断的最佳可能预测。说明了特征选择与机器学习分类器参数微调相结合对解决这一问题的重要性。使用了各种监督机器学习分类器,并将其与自己进行比较,然后与现有系统进行比较。提出的解决方案的AUC得分为0.9473,准确率为0.9412,而迄今为止最好的现有系统的AUC得分为0.928。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Descriptive Logic for Software Engineering Ontology: Aspect Software Quality Control Learning Block Programming using Scratch among School Children in Malaysia and Australia: An Exploratory Study Proposing A Data Privacy Aware Protocol for Roadside Accident Video Reporting Service Using 5G In Vehicular Cloud Networks Environment Synthesis of Reversible Logic Using Enhanced Genetic Programming Approach ICCOINS 2018 List Reviewer Page
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1