A branch and bound method solving the max–min linear discriminant analysis problem

A. Beck, R. Sharon
{"title":"A branch and bound method solving the max–min linear discriminant analysis problem","authors":"A. Beck, R. Sharon","doi":"10.1080/10556788.2023.2198769","DOIUrl":null,"url":null,"abstract":"Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for dimension reduction and classification. The method was first formulated in 1936 by Fisher in the one-dimensional setting. In this paper, we will examine the LDA problem using a different objective function. Instead of maximizing the sum of all distances between all classes, we will define an objective function that will maximize the minimum separation among all distances between all classes. This leads to a difficult nonconvex optimization problem. We present a branch and bound method for the problem in the case where the reduction is to the one-dimensional space.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2198769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fisher linear discriminant analysis (FLDA or LDA) is a well-known technique for dimension reduction and classification. The method was first formulated in 1936 by Fisher in the one-dimensional setting. In this paper, we will examine the LDA problem using a different objective function. Instead of maximizing the sum of all distances between all classes, we will define an objective function that will maximize the minimum separation among all distances between all classes. This leads to a difficult nonconvex optimization problem. We present a branch and bound method for the problem in the case where the reduction is to the one-dimensional space.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解极大极小线性判别分析问题的分支定界方法
Fisher线性判别分析(FLDA或LDA)是一种著名的降维和分类技术。这个方法最早是在1936年由费雪在一维环境下提出的。在本文中,我们将使用不同的目标函数来研究LDA问题。而不是最大化所有类之间的所有距离的总和,我们将定义一个目标函数,将最大化所有类之间的所有距离之间的最小分离。这导致了一个困难的非凸优化问题。对于一维空间的约简问题,我们给出了一个分支定界方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximizing the number of rides served for time-limited Dial-a-Ride* A family of limited memory three term conjugate gradient methods A semismooth conjugate gradients method – theoretical analysis A mixed-integer programming formulation for optimizing the double row layout problem Robust reverse 1-center problems on trees with interval costs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1