Designing neuromorphic architectures: towards an ultra low power AI

Pierre Boulet
{"title":"Designing neuromorphic architectures: towards an ultra low power AI","authors":"Pierre Boulet","doi":"10.1109/edis57230.2022.9996460","DOIUrl":null,"url":null,"abstract":"In the “bio-inspired information processing” project of the IRCICA interdisciplinary institute, we tackle the scientific challenges of the emerging neuromorphic architectures. These computer architectures mimic the brain by handling the information as spike trains and by processing this information with spiking neural networks. They have a strong potential for ultra low power artificial intelligence. Based on our last 10 years of research, we will present the state-of-the-art of these architectures, the applications we focus on, and the scientific hot topics.","PeriodicalId":288133,"journal":{"name":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Embedded & Distributed Systems (EDiS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/edis57230.2022.9996460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the “bio-inspired information processing” project of the IRCICA interdisciplinary institute, we tackle the scientific challenges of the emerging neuromorphic architectures. These computer architectures mimic the brain by handling the information as spike trains and by processing this information with spiking neural networks. They have a strong potential for ultra low power artificial intelligence. Based on our last 10 years of research, we will present the state-of-the-art of these architectures, the applications we focus on, and the scientific hot topics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计神经形态架构:迈向超低功耗AI
在IRCICA跨学科研究所的“生物启发信息处理”项目中,我们解决了新兴神经形态架构的科学挑战。这些计算机架构通过将信息处理为尖峰序列并通过尖峰神经网络处理这些信息来模仿大脑。它们在超低功耗人工智能方面有着巨大的潜力。基于我们过去10年的研究,我们将介绍这些体系结构的最新技术,我们关注的应用以及科学热点话题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Toward an iterative discretization approach for optimal sensor placement Blockchain-Based Conditional Privacy-Preserving Authentication Mechanism for Vehicular Fog Networks Efficient energy smart sensor for fall detection based on accelerometer data and CNN model Fault Tolerant Analysis using Serial-Triple Modular Redundancy (S-TMR) on TBCD Ultra Low Energy Communication Protocol for Biosensors Unsupervised Two-Stage TR-PCANet Deep Network For Unconstrained Ear Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1