Neural Networks Architectures Design, and Applications: A Review

M. A. Sadeeq, A. Abdulazeez
{"title":"Neural Networks Architectures Design, and Applications: A Review","authors":"M. A. Sadeeq, A. Abdulazeez","doi":"10.1109/ICOASE51841.2020.9436582","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs) are modern computing methods that have been used extensively in solving many complicated problems in the physical world. The attractiveness of ANNs stems from its remarkable data processing features, which mainly related to high parallelism, fault and noise resistance, learning and widespread abilities of nonlinearity. This paper introduces a review for some ANNs architectures in the field of recognition, prediction and control to be a useful toolkit and reference for the ANNs modelers. The review mechanism depends on performing a comparison among the newest research in these fields in terms of implemented field, used tools, research technique and significant satisfied aims.","PeriodicalId":126112,"journal":{"name":"2020 International Conference on Advanced Science and Engineering (ICOASE)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Advanced Science and Engineering (ICOASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOASE51841.2020.9436582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Artificial Neural Networks (ANNs) are modern computing methods that have been used extensively in solving many complicated problems in the physical world. The attractiveness of ANNs stems from its remarkable data processing features, which mainly related to high parallelism, fault and noise resistance, learning and widespread abilities of nonlinearity. This paper introduces a review for some ANNs architectures in the field of recognition, prediction and control to be a useful toolkit and reference for the ANNs modelers. The review mechanism depends on performing a comparison among the newest research in these fields in terms of implemented field, used tools, research technique and significant satisfied aims.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经网络架构、设计与应用综述
人工神经网络(ann)是一种现代计算方法,已广泛应用于解决物理世界中的许多复杂问题。人工神经网络的吸引力源于其显著的数据处理特征,主要与高并行性、抗故障和抗噪声、学习和非线性的广泛能力有关。本文对识别、预测和控制领域的一些人工神经网络体系结构进行了综述,为人工神经网络建模者提供了有用的工具箱和参考。审查机制取决于对这些领域的最新研究在实施领域、使用工具、研究技术和重大满足目标方面进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
COVID-19 Diagnosis Systems Based on Deep Convolutional Neural Networks Techniques: A Review Fake News Detection Using Machine Learning and Deep Learning Algorithms Transcript Validation System using biometric characteristics COVID-19 Diagnosis from Chest X-ray Images Using Deep Learning Approach Hate Speech Detection Using Genetic Programming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1