Developing an Architecture-independent Graph Framework for Modern Vector Processors and NVIDIA GPUs

I. Afanasyev
{"title":"Developing an Architecture-independent Graph Framework for Modern Vector Processors and NVIDIA GPUs","authors":"I. Afanasyev","doi":"10.14529/jsfi200404","DOIUrl":null,"url":null,"abstract":"This paper describes the first-in-the-world attempt to develop an architectural-independent  graph framework named VGL, designed for different modern architectures with high-bandwidth  memory. Currently VGL supports two classes of architectures: NEC SX-Aurora TSUBASA vector  processors and NVIDIA GPUs. However, VGL can be easily extended to other architectures due  to its flexible software structure. VGL is designed to provide users with the possibility of selecting  the most suitable architecture for solving a specific graph problem on a given input data, which, in  return, allows to significantly outperform existing frameworks and libraries, developed for modern  multicore CPUs and NVIDIA GPUs. Since VGL uses an identical set of computational and data  abstractions for all architectures, its users can easily port graph algorithms between different target  architectures without any source code modifications. Additionally, in this paper we show how  graph algorithms should be implemented and optimised for NVIDIA GPU and NEC SX-Aurora  TSUBASA architectures, demonstrating that both architectures have multiple similar properties  and hardware features.","PeriodicalId":338883,"journal":{"name":"Supercomput. Front. Innov.","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supercomput. Front. Innov.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14529/jsfi200404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper describes the first-in-the-world attempt to develop an architectural-independent  graph framework named VGL, designed for different modern architectures with high-bandwidth  memory. Currently VGL supports two classes of architectures: NEC SX-Aurora TSUBASA vector  processors and NVIDIA GPUs. However, VGL can be easily extended to other architectures due  to its flexible software structure. VGL is designed to provide users with the possibility of selecting  the most suitable architecture for solving a specific graph problem on a given input data, which, in  return, allows to significantly outperform existing frameworks and libraries, developed for modern  multicore CPUs and NVIDIA GPUs. Since VGL uses an identical set of computational and data  abstractions for all architectures, its users can easily port graph algorithms between different target  architectures without any source code modifications. Additionally, in this paper we show how  graph algorithms should be implemented and optimised for NVIDIA GPU and NEC SX-Aurora  TSUBASA architectures, demonstrating that both architectures have multiple similar properties  and hardware features.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为现代矢量处理器和NVIDIA gpu开发一个与架构无关的图形框架
本文描述了世界上第一次尝试开发一个名为VGL的独立于架构的图形框架,该框架是为不同的具有高带宽内存的现代架构而设计的。目前VGL支持两类架构:NEC SX-Aurora TSUBASA矢量处理器和NVIDIA gpu。然而,VGL由于其灵活的软件结构,可以很容易地扩展到其他体系结构。VGL旨在为用户提供选择最合适的架构来解决给定输入数据上的特定图形问题的可能性,这反过来又允许显着优于现有的框架和库,为现代多核cpu和NVIDIA gpu开发。由于VGL对所有体系结构使用相同的计算和数据抽象集,因此它的用户可以轻松地在不同的目标体系结构之间移植图算法,而无需修改任何源代码。此外,在本文中,我们展示了图形算法应该如何实现和优化NVIDIA GPU和NEC SX-Aurora TSUBASA架构,证明这两种架构具有多个相似的属性和硬件功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Supercomputer-Based Modeling System for Short-Term Prediction of Urban Surface Air Quality River Routing in the INM RAS-MSU Land Surface Model: Numerical Scheme and Parallel Implementation on Hybrid Supercomputers Data Assimilation by Neural Network for Ocean Circulation: Parallel Implementation Multistage Iterative Method to Tackle Inverse Problems of Wave Tomography Machine Learning Approaches to Extreme Weather Events Forecast in Urban Areas: Challenges and Initial Results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1