Learning prototype-selection rules for case-based iterative design

M. Schwabacher, H. Hirsh, T. Ellman
{"title":"Learning prototype-selection rules for case-based iterative design","authors":"M. Schwabacher, H. Hirsh, T. Ellman","doi":"10.1109/CAIA.1994.323692","DOIUrl":null,"url":null,"abstract":"The first step for most case-based design systems is to select an initial prototype from a database of previous designs. The retrieved prototype is then modified to tailor it to the given goals. For any particular design goal the selection of a starting point for the design process can have a dramatic effect both on the quality of the eventual design and on the overall design time. We present a technique for automatically constructing effective prototype-selection rules. Our technique applies a standard inductive-learning algorithm, C4.5, to a set of training data describing which particular prototype would have been the best choice for each goal encountered in a previous design session. We have tested our technique in, the domain of racing-yacht-hull design, comparing our inductively learned selection rules to several competing prototype-selection methods. Our results show that the inductive prototype-selection method leads to better final designs when the design process is guided by a noisy evaluation function, and that the inductively learned rules will often be more efficient than competing methods.<<ETX>>","PeriodicalId":297396,"journal":{"name":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth Conference on Artificial Intelligence for Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAIA.1994.323692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The first step for most case-based design systems is to select an initial prototype from a database of previous designs. The retrieved prototype is then modified to tailor it to the given goals. For any particular design goal the selection of a starting point for the design process can have a dramatic effect both on the quality of the eventual design and on the overall design time. We present a technique for automatically constructing effective prototype-selection rules. Our technique applies a standard inductive-learning algorithm, C4.5, to a set of training data describing which particular prototype would have been the best choice for each goal encountered in a previous design session. We have tested our technique in, the domain of racing-yacht-hull design, comparing our inductively learned selection rules to several competing prototype-selection methods. Our results show that the inductive prototype-selection method leads to better final designs when the design process is guided by a noisy evaluation function, and that the inductively learned rules will often be more efficient than competing methods.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
学习基于案例迭代设计的原型选择规则
大多数基于案例的设计系统的第一步是从先前设计的数据库中选择一个初始原型。然后对检索到的原型进行修改,使其适应给定的目标。对于任何特定的设计目标,设计过程起点的选择都会对最终设计的质量和整体设计时间产生巨大影响。提出了一种自动构造有效原型选择规则的技术。我们的技术将标准的归纳学习算法(C4.5)应用于一组训练数据,这些数据描述了哪个特定的原型是之前设计会议中遇到的每个目标的最佳选择。我们已经在赛艇船体设计领域测试了我们的技术,将我们的归纳学习选择规则与几种竞争的原型选择方法进行了比较。我们的研究结果表明,当设计过程受到噪声评价函数的指导时,归纳原型选择方法可以获得更好的最终设计,并且归纳学习的规则通常比竞争方法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OaSiS: integrating safety reasoning for decision support in oncology Memory-based parsing with parallel marker-passing A study of an expert system for interpreting human walking disorders Integrating case-based reasoning, knowledge-based approach and Dijkstra algorithm for route finding Learning control knowledge through cases in schedule optimization problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1