One-Class Principal Component Classifier for anomaly detection in wireless sensor network

M. Rassam, A. Zainal, M. A. Maarof
{"title":"One-Class Principal Component Classifier for anomaly detection in wireless sensor network","authors":"M. Rassam, A. Zainal, M. A. Maarof","doi":"10.1109/CASoN.2012.6412414","DOIUrl":null,"url":null,"abstract":"To ensure the quality of data collected by sensor networks, misbehavior in measurements should be detected efficiently and accurately in each sensor node before relying the data to the base station. In this paper, a novel anomaly detection model is proposed based on the lightweight One Class Principal Component Classifier for detecting anomalies in sensor measurements collected by each node locally. The efficiency and accuracy of the proposed model are demonstrated using two real life wireless sensor networks datasets namely; labeled dataset (LD) and Intel Berkeley Research Lab dataset (IBRL). The simulation results show that our model achieves higher detection accuracy with relatively lower false alarms. Furthermore, the proposed model incurs less energy consumption by reducing the computational complexity in each node.","PeriodicalId":431370,"journal":{"name":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Computational Aspects of Social Networks (CASoN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASoN.2012.6412414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

To ensure the quality of data collected by sensor networks, misbehavior in measurements should be detected efficiently and accurately in each sensor node before relying the data to the base station. In this paper, a novel anomaly detection model is proposed based on the lightweight One Class Principal Component Classifier for detecting anomalies in sensor measurements collected by each node locally. The efficiency and accuracy of the proposed model are demonstrated using two real life wireless sensor networks datasets namely; labeled dataset (LD) and Intel Berkeley Research Lab dataset (IBRL). The simulation results show that our model achieves higher detection accuracy with relatively lower false alarms. Furthermore, the proposed model incurs less energy consumption by reducing the computational complexity in each node.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类主成分分类器在无线传感器网络异常检测中的应用
为了保证传感器网络采集数据的质量,在将数据传输到基站之前,需要在每个传感器节点上高效、准确地检测到测量中的错误行为。本文提出了一种基于轻量级的单类主成分分类器的异常检测模型,用于检测各节点局部采集的传感器测量数据中的异常。利用两个真实的无线传感器网络数据集验证了该模型的有效性和准确性;标记数据集(LD)和英特尔伯克利研究实验室数据集(IBRL)。仿真结果表明,该模型具有较高的检测精度和较低的误报率。此外,该模型通过降低每个节点的计算复杂度而减少了能量消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Boosting Optimum-Path Forest clustering through harmony Search and its applications for intrusion detection in computer networks Graph-based cross-validated committees ensembles Automatic sentiment analysis of Twitter messages Identifying focal patterns in social networks Ontology-based Negotiation of security requirements in cloud
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1