{"title":"Fully Neural Network Mode Based Intra Prediction of Variable Block Size","authors":"Heming Sun, Lu Yu, J. Katto","doi":"10.1109/VCIP49819.2020.9301842","DOIUrl":null,"url":null,"abstract":"Intra prediction is an essential component in the image coding. This paper gives an intra prediction framework completely based on neural network modes (NM). Each NM can be regarded as a regression from the neighboring reference blocks to the current coding block. (1) For variable block size, we utilize different network structures. For small blocks 4×4 and 8×8, fully connected networks are used, while for large blocks 16×16 and 32×32, convolutional neural networks are exploited. (2) For each prediction mode, we develop a specific pre-trained network to boost the regression accuracy. When integrating into HEVC test model, we can save 3.55%, 3.03% and 3.27% BD-rate for Y, U, V components compared with the anchor. As far as we know, this is the first work to explore a fully NM based framework for intra prediction, and we reach a better coding gain with a lower complexity compared with the previous work.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Intra prediction is an essential component in the image coding. This paper gives an intra prediction framework completely based on neural network modes (NM). Each NM can be regarded as a regression from the neighboring reference blocks to the current coding block. (1) For variable block size, we utilize different network structures. For small blocks 4×4 and 8×8, fully connected networks are used, while for large blocks 16×16 and 32×32, convolutional neural networks are exploited. (2) For each prediction mode, we develop a specific pre-trained network to boost the regression accuracy. When integrating into HEVC test model, we can save 3.55%, 3.03% and 3.27% BD-rate for Y, U, V components compared with the anchor. As far as we know, this is the first work to explore a fully NM based framework for intra prediction, and we reach a better coding gain with a lower complexity compared with the previous work.