Simulation and optimization of traffic in a city

Marco A. Wiering, J. Vreeken, J. V. Veenen, A. Koopman
{"title":"Simulation and optimization of traffic in a city","authors":"Marco A. Wiering, J. Vreeken, J. V. Veenen, A. Koopman","doi":"10.1109/IVS.2004.1336426","DOIUrl":null,"url":null,"abstract":"Optimal traffic light control is a multi-agent decision problem, for which we propose to use reinforcement learning algorithms. Our algorithm learns the expected waiting times of cars for red and green lights at each intersection, and sets the traffic lights to green for the configuration maximizing individual car gains. For testing our adaptive traffic light controllers, we developed the green light district simulator. The experimental results show that the adaptive algorithms can strongly reduce average waiting times of cars compared to three hand-designed controllers.","PeriodicalId":296386,"journal":{"name":"IEEE Intelligent Vehicles Symposium, 2004","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"159","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Intelligent Vehicles Symposium, 2004","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2004.1336426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 159

Abstract

Optimal traffic light control is a multi-agent decision problem, for which we propose to use reinforcement learning algorithms. Our algorithm learns the expected waiting times of cars for red and green lights at each intersection, and sets the traffic lights to green for the configuration maximizing individual car gains. For testing our adaptive traffic light controllers, we developed the green light district simulator. The experimental results show that the adaptive algorithms can strongly reduce average waiting times of cars compared to three hand-designed controllers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
城市交通的模拟与优化
最优交通灯控制是一个多智能体决策问题,我们提出使用强化学习算法来解决这个问题。我们的算法学习了每个十字路口的车辆等待红灯和绿灯的预期时间,并将交通灯设置为绿色,以实现个体车辆收益最大化的配置。为了测试我们的自适应交通灯控制器,我们开发了绿灯区模拟器。实验结果表明,与手工设计的三种控制器相比,自适应算法能显著减少车辆的平均等待时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of an instrumented vehicle test bed for developing a human centered driver support system Defect detection on rail surfaces by a vision based system Probabilistic contour extraction with model-switching for vehicle localization A fuzzy ranking method for automated highway driving Fusion of range and vision for real-time motion estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1