STSDB: spatio-temporal sensor database for smart city query processing

Utsav Vyas, P. Panchal, Mayank Patel, Minal Bhise
{"title":"STSDB: spatio-temporal sensor database for smart city query processing","authors":"Utsav Vyas, P. Panchal, Mayank Patel, Minal Bhise","doi":"10.1145/3288599.3296015","DOIUrl":null,"url":null,"abstract":"Modern world smart devices are equipped with several sensors which continuously generate the data. Managing and analyzing these data efficiently is a key need of the current sensor world. Present applications require real-time analysis of past sensor data for decision making. The goal of this work is to efficiently process the spatio-temporal queries for sensor data. Spatio-Temporal Sensor Index STSI helps in managing the sensor details and leads to faster query processing. The types of queries that have been considered are; 1) Spatio-Time Travel, 2) Temporal Aggregation and 3) Time Travel, 4) Spatio-temporal Aggregation. Spatio-Temporal Sensor Database STSDB is built by including STSI index in HBase. The STSDB performance is compared with HBase on two parameters Data Insertion Time DIT, and Query Execution Time QET. The DIT of STSDB is almost identical as compared to HBase. While the QET averaged over all four types of queries show 49% improvement for STSDB over HBase. Both the performance parameters continue to show similar trends for scaled data in HBase and STSDB. STSDB is demonstrated in this work using smart city data.","PeriodicalId":346177,"journal":{"name":"Proceedings of the 20th International Conference on Distributed Computing and Networking","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Conference on Distributed Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3288599.3296015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Modern world smart devices are equipped with several sensors which continuously generate the data. Managing and analyzing these data efficiently is a key need of the current sensor world. Present applications require real-time analysis of past sensor data for decision making. The goal of this work is to efficiently process the spatio-temporal queries for sensor data. Spatio-Temporal Sensor Index STSI helps in managing the sensor details and leads to faster query processing. The types of queries that have been considered are; 1) Spatio-Time Travel, 2) Temporal Aggregation and 3) Time Travel, 4) Spatio-temporal Aggregation. Spatio-Temporal Sensor Database STSDB is built by including STSI index in HBase. The STSDB performance is compared with HBase on two parameters Data Insertion Time DIT, and Query Execution Time QET. The DIT of STSDB is almost identical as compared to HBase. While the QET averaged over all four types of queries show 49% improvement for STSDB over HBase. Both the performance parameters continue to show similar trends for scaled data in HBase and STSDB. STSDB is demonstrated in this work using smart city data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STSDB:用于智慧城市查询处理的时空传感器数据库
现代世界的智能设备配备了几个传感器,这些传感器可以不断地产生数据。有效地管理和分析这些数据是当前传感器世界的关键需求。目前的应用需要实时分析过去的传感器数据来进行决策。本工作的目的是有效地处理传感器数据的时空查询。时空传感器索引STSI有助于管理传感器细节,并导致更快的查询处理。已经考虑的查询类型有:1)时空旅行,2)时间聚集,3)时间旅行,4)时空聚集。通过在HBase中加入STSI索引,构建了时空传感器数据库STSDB。在数据插入时间DIT和查询执行时间QET两个参数上比较了STSDB与HBase的性能。与HBase相比,STSDB的DIT几乎相同。而所有四种查询类型的QET平均值显示,STSDB比HBase提高了49%。对于HBase和STSDB中的扩展数据,这两个性能参数继续显示类似的趋势。本研究使用智慧城市数据演示了STSDB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving efficacy of concurrent internal binary search trees using local recovery An accurate missing data prediction method using LSTM based deep learning for health care A simple and practical concurrent non-blocking unbounded graph with linearizable reachability queries EnTER: an encounter based trowbox deployment strategy for enhancing network reliability in post-disaster scenarios over DTN Exploration and impact of blockchain-enabled adaptive non-binary trust models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1