Multiple Instance Support Vector Machines with latent variable description

J. Lu, Wei Li, Jiabao Wang, Yafei Zhang, Yang Li, Lei Bao
{"title":"Multiple Instance Support Vector Machines with latent variable description","authors":"J. Lu, Wei Li, Jiabao Wang, Yafei Zhang, Yang Li, Lei Bao","doi":"10.1109/FSKD.2013.6816236","DOIUrl":null,"url":null,"abstract":"In this paper, the latent variable model is adopted to re-describe MI-SVM and its feature mapping variants. MI-SVM with latent variable description and the corresponding stochastic optimization learning algorithm are proposed. In the Musk and Corel datasets, the proposed algorithm achieves higher predicting accuracy and faster learning speed, with strong stability and robustness for parameters and noise.","PeriodicalId":368964,"journal":{"name":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2013.6816236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the latent variable model is adopted to re-describe MI-SVM and its feature mapping variants. MI-SVM with latent variable description and the corresponding stochastic optimization learning algorithm are proposed. In the Musk and Corel datasets, the proposed algorithm achieves higher predicting accuracy and faster learning speed, with strong stability and robustness for parameters and noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有潜在变量描述的多实例支持向量机
本文采用隐变量模型对MI-SVM及其特征映射变量进行重新描述。提出了具有潜在变量描述的MI-SVM及其随机优化学习算法。在Musk和Corel数据集中,本文算法的预测精度更高,学习速度更快,对参数和噪声具有较强的稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised clustering with the Octave Fuzzy Logic Toolkit Application of adaptive neuro-fuzzy inference system for physical habitat simulation Fuzzy equivalence relation clustering with transitive closure, transitive opening and the optimal transitive approximation A local domain adaptation feature extraction method A real-time algorithm for fixed-length short data compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1