Association Metrics in Neural Transition-Based Dependency Parsing

Patricia Fischer, Sebastian Pütz, Daniël de Kok
{"title":"Association Metrics in Neural Transition-Based Dependency Parsing","authors":"Patricia Fischer, Sebastian Pütz, Daniël de Kok","doi":"10.18653/v1/W19-7722","DOIUrl":null,"url":null,"abstract":"Lexical preferences encoded as association metrics have been shown to improve performance on structural ambiguities that are still challenging for modern parsers. This paper introduces a mechanism to include lexical preferences into a neural transition-based dependency parser for German. We compare pointwise mutual information (PMI) and embedding-based scores. Both the PMI-based model and the embedding-based model outperform the baseline significantly. The best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.","PeriodicalId":443459,"journal":{"name":"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Dependency Linguistics (Depling, SyntaxFest 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-7722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Lexical preferences encoded as association metrics have been shown to improve performance on structural ambiguities that are still challenging for modern parsers. This paper introduces a mechanism to include lexical preferences into a neural transition-based dependency parser for German. We compare pointwise mutual information (PMI) and embedding-based scores. Both the PMI-based model and the embedding-based model outperform the baseline significantly. The best model is PMI-based and increases overall performance by 0.26 LAS points over the baseline.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经转换的依赖分析中的关联度量
作为关联度量编码的词法首选项已被证明可以提高处理结构歧义的性能,而结构歧义对于现代解析器来说仍然是一个挑战。本文介绍了一种将词法偏好包含到基于神经转换的德语依赖解析器中的机制。我们比较了点互信息(PMI)和基于嵌入的分数。基于pmi的模型和基于嵌入的模型都明显优于基线。最好的模型是基于pmi的,总体性能比基线提高了0.26 LAS点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Character-level Annotation for Chinese Surface-Syntactic Universal Dependencies Word order variation in Mbyá Guaraní Towards Deep Universal Dependencies Quantitative Analysis on verb valence evolution of Chinese A Spanish E-dictionary of Collocations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1