Optimization of thermal design for nitrogen shield of JET cryopump

C. Baxi, W. Obert
{"title":"Optimization of thermal design for nitrogen shield of JET cryopump","authors":"C. Baxi, W. Obert","doi":"10.1109/FUSION.1991.218651","DOIUrl":null,"url":null,"abstract":"Thermal analysis of the nitrogen shield of the JET (Joint European Torus) cryopump was done using a finite element computer program. In this analysis, a parallel flow arrangement and two series flow arrangements were compared for cooldown from 300 to about 80 K. In order to simplify the analysis, coolant was assumed to be a N/sub 2/ gas at an inlet temperature of 80 K. It is shown that all three flow arrangements have similar time for cooling down the shield from 300 to 80 K. This means that the heat exchange effect or radial conduction from the warm part of the shield to the cold part of the shield for series flow arrangements is not dominant. Due to small conduction effects, it will be feasible to modify the design to a more stable series flow arrangement. This flow arrangement will also have minimum cooling time. The inner stainless steel shield has small thermal conductivity and, hence, this part of the shield lags in cooling behind the rest of the shield. This could be remedied by adding about a 1-mm layer of copper in poloidal stripes to the stainless steel fin.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal analysis of the nitrogen shield of the JET (Joint European Torus) cryopump was done using a finite element computer program. In this analysis, a parallel flow arrangement and two series flow arrangements were compared for cooldown from 300 to about 80 K. In order to simplify the analysis, coolant was assumed to be a N/sub 2/ gas at an inlet temperature of 80 K. It is shown that all three flow arrangements have similar time for cooling down the shield from 300 to 80 K. This means that the heat exchange effect or radial conduction from the warm part of the shield to the cold part of the shield for series flow arrangements is not dominant. Due to small conduction effects, it will be feasible to modify the design to a more stable series flow arrangement. This flow arrangement will also have minimum cooling time. The inner stainless steel shield has small thermal conductivity and, hence, this part of the shield lags in cooling behind the rest of the shield. This could be remedied by adding about a 1-mm layer of copper in poloidal stripes to the stainless steel fin.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
JET低温泵氮屏蔽热设计优化
利用有限元程序对JET (Joint European Torus)低温泵的氮屏蔽层进行了热分析。在此分析中,比较了平行流动安排和两种串联流动安排的冷却时间从300到大约80 K。为了简化分析,假设冷却剂为入口温度为80k时的N/sub / gas。结果表明,三种流动方式对300 ~ 80k的屏蔽层冷却时间相似。这意味着在串联流动布置中,从护板的温暖部分到护板的寒冷部分的热交换效应或径向传导不占主导地位。由于传导效应小,将设计修改为更稳定的串联流动布置是可行的。这种流动安排也将有最小的冷却时间。内部不锈钢护罩的导热系数很小,因此,这部分护罩的冷却滞后于护罩的其余部分。这可以通过在不锈钢翅片上加一层1毫米厚的极向条纹铜来弥补
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of a coil to correct magnetic field errors on the DIII-D tokamak The charge exchange recombination diagnostic system on the DIII-D tokamak Software upgrade for the DIII-D neutral beam control systems Timing system for neutral beam injection on the DIII-D tokamak DIII-D radiation shielding procedures and experiences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1