Improved decoding for Raptor codes with short block-lengths over BIAWGN channel

Amrit Kharel, Lei Cao
{"title":"Improved decoding for Raptor codes with short block-lengths over BIAWGN channel","authors":"Amrit Kharel, Lei Cao","doi":"10.1109/CITS.2016.7546447","DOIUrl":null,"url":null,"abstract":"Decoding of Raptor codes consists of decoding of both the LT part and the precode part of the codes. When LT decoding is performed, a scenario may arise where the message passing-based decoding process is unable to provide non-zero log-likelihood ratio (LLR) updates to a fraction of input symbols even if it is mathematically possible to do so. The problem is even more critical for codes with short block-lengths and for smaller overheads. We show that this problem degrades the overall decoding performance of Raptor codes over binary input additive white Gaussian noise (BIAWGN) channel. To combat this problem, the Gauss-Jordan elimination (GJE) is used to assist decoding so that the decoder can continuously provide non-zero LLR updates to all the input symbols connected in the decoding graph. Through simulation results we show that the GJE-assisted method provides significantly better bit error rate (BER) performance of Raptor codes than the traditional method across a wide range of signal to noise ratio (SNR) and transmission overheads.","PeriodicalId":340958,"journal":{"name":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Computer, Information and Telecommunication Systems (CITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CITS.2016.7546447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Decoding of Raptor codes consists of decoding of both the LT part and the precode part of the codes. When LT decoding is performed, a scenario may arise where the message passing-based decoding process is unable to provide non-zero log-likelihood ratio (LLR) updates to a fraction of input symbols even if it is mathematically possible to do so. The problem is even more critical for codes with short block-lengths and for smaller overheads. We show that this problem degrades the overall decoding performance of Raptor codes over binary input additive white Gaussian noise (BIAWGN) channel. To combat this problem, the Gauss-Jordan elimination (GJE) is used to assist decoding so that the decoder can continuously provide non-zero LLR updates to all the input symbols connected in the decoding graph. Through simulation results we show that the GJE-assisted method provides significantly better bit error rate (BER) performance of Raptor codes than the traditional method across a wide range of signal to noise ratio (SNR) and transmission overheads.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进了在BIAWGN信道上短块长度猛禽代码的解码
Raptor编码的解码包括编码的LT部分和预编码部分的解码。当执行LT解码时,可能会出现这样一种情况,即基于消息传递的解码过程无法为一小部分输入符号提供非零对数似然比(LLR)更新,即使在数学上可能这样做。对于块长度较短且开销较小的代码,这个问题更为严重。我们发现这个问题降低了Raptor码在二进制输入加性高斯白噪声(BIAWGN)信道上的整体解码性能。为了解决这个问题,使用高斯-乔丹消去(GJE)来辅助解码,以便解码器可以连续地为解码图中连接的所有输入符号提供非零的LLR更新。仿真结果表明,在很大的信噪比(SNR)和传输开销范围内,gje辅助方法提供了比传统方法更好的猛禽码误码率(BER)性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recursive construction of quasi-cyclic cycle LDPC codes based on replacement products Design and realization of IMA/DIMA system management based on avionics switched network Mining co-location patterns with spatial distribution characteristics Multilayer perceptron for modulation recognition cognitive radio system Joint hierarchical modulation and network coding for asymmetric data transmission in wireless cooperative communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1