Offline and online deep learning for image recognition

N. H. Phong, B. Ribeiro
{"title":"Offline and online deep learning for image recognition","authors":"N. H. Phong, B. Ribeiro","doi":"10.1109/EXPAT.2017.7984421","DOIUrl":null,"url":null,"abstract":"Image recognition using Deep Learning has been evolved for decades though advances in the field through different settings is still a challenge. In this paper, we present our findings in searching for better image classifiers in offline and online environments. We resort to Convolutional Neural Network and its variations of fully connected Multi-layer Perceptron. Though still preliminary, these results are encouraging and may provide a better understanding about the field and directions toward future works.","PeriodicalId":283954,"journal":{"name":"2017 4th Experiment@International Conference (exp.at'17)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 4th Experiment@International Conference (exp.at'17)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EXPAT.2017.7984421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Image recognition using Deep Learning has been evolved for decades though advances in the field through different settings is still a challenge. In this paper, we present our findings in searching for better image classifiers in offline and online environments. We resort to Convolutional Neural Network and its variations of fully connected Multi-layer Perceptron. Though still preliminary, these results are encouraging and may provide a better understanding about the field and directions toward future works.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像识别的离线和在线深度学习
使用深度学习的图像识别已经发展了几十年,尽管通过不同的环境在该领域取得进展仍然是一个挑战。在本文中,我们介绍了在离线和在线环境中寻找更好的图像分类器的研究结果。我们采用卷积神经网络及其变体的全连接多层感知器。虽然还处于初步阶段,但这些结果令人鼓舞,并可能提供对该领域和未来工作方向的更好理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cloud ecosystem for supporting inquiry learning with online labs: Creation, personalization, and exploitation Using marker based augmented reality and natural user interface for interactive remote experiments Mixed reality voice training for lecturers Adding augmented reality to laboratory experimentation Collaborative BIM environment as a support to conflict analysis in building design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1