Block truncation coding using neural network-based vector quantization for image compression

C. Angelakis, G.A. Maragakis, P. Stavroulakis
{"title":"Block truncation coding using neural network-based vector quantization for image compression","authors":"C. Angelakis, G.A. Maragakis, P. Stavroulakis","doi":"10.1109/GLOCOM.1998.776853","DOIUrl":null,"url":null,"abstract":"A new method is introduced by which a block truncation coder (BTC) is cascaded with a neural network-based vector quantizer (VQ). The proposed coder is very attractive for real time image transmission due to its simplicity and performance. It preserves important characteristics of the image, while cascading the BTC coder with a VQ results in high compression ratios of about 0.5 bpp without significantly increasing the coding time, due to fast coding look-up tables of the VQs. Additional advantages are fast codebook design and reduction of the codebook size required for a given reconstructed image quality.","PeriodicalId":414137,"journal":{"name":"IEEE GLOBECOM 1998 (Cat. NO. 98CH36250)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE GLOBECOM 1998 (Cat. NO. 98CH36250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GLOCOM.1998.776853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A new method is introduced by which a block truncation coder (BTC) is cascaded with a neural network-based vector quantizer (VQ). The proposed coder is very attractive for real time image transmission due to its simplicity and performance. It preserves important characteristics of the image, while cascading the BTC coder with a VQ results in high compression ratios of about 0.5 bpp without significantly increasing the coding time, due to fast coding look-up tables of the VQs. Additional advantages are fast codebook design and reduction of the codebook size required for a given reconstructed image quality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的矢量量化的块截断编码用于图像压缩
提出了一种将块截断编码器(BTC)与基于神经网络的矢量量化器(VQ)级联的方法。所提出的编码器由于其简单性和性能,在实时图像传输中具有很大的吸引力。它保留了图像的重要特征,而将BTC编码器与VQ级联可以在没有显著增加编码时间的情况下获得约0.5 bpp的高压缩比,因为VQ的编码查找表很快。其他优点是快速码本设计和减少给定重建图像质量所需的码本尺寸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance evaluation and parameter optimization of wavelength division multiplexing networks with adaptive importance sampling techniques TCP over end-to-end ABR: a study of TCP performance with end-to-end rate control and stochastic available capacity Delay analysis for CBR traffic in static-priority scheduling: single-node and heterogeneous CBR traffic case Feedback rate control with congestion prediction by edge nodes in ATM-WAN Direct-detection optical asynchronous CDMA systems with double optical hard-limiters: APD noise and thermal noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1