Stacked Random Forests: More Accurate and Better Calibrated

R. Hänsch
{"title":"Stacked Random Forests: More Accurate and Better Calibrated","authors":"R. Hänsch","doi":"10.1109/IGARSS39084.2020.9324475","DOIUrl":null,"url":null,"abstract":"Stacked Random Forests (SRFs) sequentially apply multiple Random Forests (RFs) where each instance uses the estimate of the predecessor as additional input to further refine the prediction. They have been shown to improve the performance for semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) images. Both, RFs and SRFs, not only provide an estimate of the class label of a query sample, but instead make a probabilistic prediction, i.e. provide the full class posterior. The probabilistic predictions of RFs are known to be usually well calibrated (i.e. the predictions match the expected probability distributions of each class). This paper answers the question whether stacking leads to overfitting on the training data or decreases the calibration quality of RFs. Results indicate that neither is the case. Instead, classification accuracy steadily increases and then saturates quickly after only a few stacking levels. The predicted probabilities are generally well calibrated where calibration quality also increases slightly for higher stacking levels.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Stacked Random Forests (SRFs) sequentially apply multiple Random Forests (RFs) where each instance uses the estimate of the predecessor as additional input to further refine the prediction. They have been shown to improve the performance for semantic segmentation of Polarimetric Synthetic Aperture Radar (PolSAR) images. Both, RFs and SRFs, not only provide an estimate of the class label of a query sample, but instead make a probabilistic prediction, i.e. provide the full class posterior. The probabilistic predictions of RFs are known to be usually well calibrated (i.e. the predictions match the expected probability distributions of each class). This paper answers the question whether stacking leads to overfitting on the training data or decreases the calibration quality of RFs. Results indicate that neither is the case. Instead, classification accuracy steadily increases and then saturates quickly after only a few stacking levels. The predicted probabilities are generally well calibrated where calibration quality also increases slightly for higher stacking levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
堆叠随机森林:更准确和更好的校准
堆叠随机森林(堆叠随机森林)依次应用多个随机森林(堆叠随机森林),其中每个实例使用前一个实例的估计作为额外输入,以进一步改进预测。它们已被证明可以提高偏振合成孔径雷达(PolSAR)图像的语义分割性能。RFs和SRFs都不仅提供了查询样本的类标签的估计,而且还进行了概率预测,即提供了完整的类后验。已知rf的概率预测通常是经过良好校准的(即预测与每个类别的预期概率分布相匹配)。本文回答了叠加是否会导致训练数据过拟合或降低rf校准质量的问题。结果表明两者都不是。相反,分类精度稳步增加,然后在几个堆叠层后迅速饱和。预测概率通常是很好的校准,校准质量也会因较高的堆叠水平而略有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Retrieval of Solar-Induced Chlorophyll Fluorescence at Red Spectral Peak with Tropomi on Sentinel-5 Precursor Mapping the Rate of Carbon Mineralization in Oman Ophiolites Using Sentinel-1 InSAR Time Series Characterization of Biomass Burning Aerosols During the 2019 Fire Event: Singapore and Kuching Cities Exploitation of Earth Observations: OGC Contributions to GRSS Earth Science Informatics A Pseudospectral Time-Domain Simulator for Large-Scale Half-Space Electromagnetic Scattering and Radar Sounding Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1