Adam-Smith at SemEval-2023 Task 4: Discovering Human Values in Arguments with Ensembles of Transformer-based Models

Daniel Schroter, D. Dementieva, G. Groh
{"title":"Adam-Smith at SemEval-2023 Task 4: Discovering Human Values in Arguments with Ensembles of Transformer-based Models","authors":"Daniel Schroter, D. Dementieva, G. Groh","doi":"10.48550/arXiv.2305.08625","DOIUrl":null,"url":null,"abstract":"This paper presents the best-performing approach alias “Adam Smith” for the SemEval-2023 Task 4: “Identification of Human Values behind Arguments”. The goal of the task was to create systems that automatically identify the values within textual arguments. We train transformer-based models until they reach their loss minimum or f1-score maximum. Ensembling the models by selecting one global decision threshold that maximizes the f1-score leads to the best-performing system in the competition. Ensembling based on stacking with logistic regressions shows the best performance on an additional dataset provided to evaluate the robustness (“Nahj al-Balagha”). Apart from outlining the submitted system, we demonstrate that the use of the large ensemble model is not necessary and that the system size can be significantly reduced.","PeriodicalId":444285,"journal":{"name":"International Workshop on Semantic Evaluation","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Semantic Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2305.08625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the best-performing approach alias “Adam Smith” for the SemEval-2023 Task 4: “Identification of Human Values behind Arguments”. The goal of the task was to create systems that automatically identify the values within textual arguments. We train transformer-based models until they reach their loss minimum or f1-score maximum. Ensembling the models by selecting one global decision threshold that maximizes the f1-score leads to the best-performing system in the competition. Ensembling based on stacking with logistic regressions shows the best performance on an additional dataset provided to evaluate the robustness (“Nahj al-Balagha”). Apart from outlining the submitted system, we demonstrate that the use of the large ensemble model is not necessary and that the system size can be significantly reduced.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adam-Smith在SemEval-2023的任务4:在基于变压器的模型集合的争论中发现人类的价值
本文为SemEval-2023任务4:“识别争论背后的人类价值”提出了性能最好的方法,别名为“亚当·斯密”。该任务的目标是创建能够自动识别文本参数中的值的系统。我们训练基于变压器的模型,直到它们达到损耗最小值或f1分数最大值。通过选择一个使f1得分最大化的全局决策阈值来集成模型,可以使系统在竞争中表现最佳。基于逻辑回归叠加的集成在额外的数据集上显示出最佳性能,以评估鲁棒性(“Nahj al-Balagha”)。除了概述所提交的系统外,我们还证明了没有必要使用大型集成模型,并且可以显着减小系统大小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SemEval-2022 Task 7: Identifying Plausible Clarifications of Implicit and Underspecified Phrases in Instructional Texts Mao-Zedong at SemEval-2023 Task 4: Label Represention Multi-Head Attention Model with Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification UAlberta at SemEval-2023 Task 1: Context Augmentation and Translation for Multilingual Visual Word Sense Disambiguation LCT-1 at SemEval-2023 Task 10: Pre-training and Multi-task Learning for Sexism Detection and Classification CL-UZH at SemEval-2023 Task 10: Sexism Detection through Incremental Fine-Tuning and Multi-Task Learning with Label Descriptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1