Text Classification for Monolingual Political Manifestos with Words Out of Vocabulary

Arsenii Rasov, I. Obabkov, E. Olbrich, Ivan P. Yamshchikov
{"title":"Text Classification for Monolingual Political Manifestos with Words Out of Vocabulary","authors":"Arsenii Rasov, I. Obabkov, E. Olbrich, Ivan P. Yamshchikov","doi":"10.5220/0009792101490154","DOIUrl":null,"url":null,"abstract":"In this position paper, we implement an automatic coding algorithm for electoral programs from the Manifesto Project Database. We propose a new approach that works with new words that are out of the training vocabulary, replacing them with the words from training vocabulary that are the closest neighbors in the space of word embeddings. A set of simulations demonstrates that the proposed algorithm shows classification accuracy comparable to the state-of-the-art benchmarks for monolingual multi-label classification. The agreement levels for the algorithm is comparable with manual labeling. The results for a broad set of model hyperparameters are compared to each other.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009792101490154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this position paper, we implement an automatic coding algorithm for electoral programs from the Manifesto Project Database. We propose a new approach that works with new words that are out of the training vocabulary, replacing them with the words from training vocabulary that are the closest neighbors in the space of word embeddings. A set of simulations demonstrates that the proposed algorithm shows classification accuracy comparable to the state-of-the-art benchmarks for monolingual multi-label classification. The agreement levels for the algorithm is comparable with manual labeling. The results for a broad set of model hyperparameters are compared to each other.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单语无词政治宣言的文本分类
在这篇论文中,我们实现了一种来自宣言项目数据库的选举程序自动编码算法。我们提出了一种新的方法,可以处理训练词汇表之外的新词,用单词嵌入空间中最近邻的训练词汇表中的单词替换它们。一组仿真表明,该算法的分类精度可与单语言多标签分类的最新基准相媲美。该算法的一致性水平与人工标注相当。对一组广泛的模型超参数的结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Moving Other Way: Exploring Word Mover Distance Extensions Artificial Neural Networks Jamming on the Beat FLOPTICS: A Novel Automated Gating Technique for Flow Cytometry Data It Means More if It Sounds Good: Yet Another Hypotheses Concerning the Evolution of Polysemous Words An Empirical Research on the Investment Strategy of Stock Market based on Deep Reinforcement Learning model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1