Short-term fuzzy traffic flow prediction using self-organizing TSK-type fuzzy neural network

Liang Zhao, Fei-Yue Wang
{"title":"Short-term fuzzy traffic flow prediction using self-organizing TSK-type fuzzy neural network","authors":"Liang Zhao, Fei-Yue Wang","doi":"10.1109/ICVES.2007.4456388","DOIUrl":null,"url":null,"abstract":"In this paper, an self-organizing TSK-type fuzzy neural network is proposed for predicting the short-term traffic flow. The proposed fuzzy neural network is adaptively organized from the collected short-term traffic flow data. The whole process is divided into two stage, i.e., structure identification and parameter learning. In structure identification, the mean shift clustering algorithm performs the whole traffic flow data set in order to generate the initial structure and mean firing strength method is used to prune the redundant fuzzy neurons. After the structure identification is finished, the chaotic parameter PSO is adopted to perform the parameter learning. Then the trained fuzzy neural network is employed the collected short- term traffic flow test set and the prediction result verifies that the self-organizing TSK-type fuzzy neural network has higher prediction accuracy than some traditional methods.","PeriodicalId":202772,"journal":{"name":"2007 IEEE International Conference on Vehicular Electronics and Safety","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Vehicular Electronics and Safety","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICVES.2007.4456388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper, an self-organizing TSK-type fuzzy neural network is proposed for predicting the short-term traffic flow. The proposed fuzzy neural network is adaptively organized from the collected short-term traffic flow data. The whole process is divided into two stage, i.e., structure identification and parameter learning. In structure identification, the mean shift clustering algorithm performs the whole traffic flow data set in order to generate the initial structure and mean firing strength method is used to prune the redundant fuzzy neurons. After the structure identification is finished, the chaotic parameter PSO is adopted to perform the parameter learning. Then the trained fuzzy neural network is employed the collected short- term traffic flow test set and the prediction result verifies that the self-organizing TSK-type fuzzy neural network has higher prediction accuracy than some traditional methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自组织tsk型模糊神经网络的短期模糊交通流预测
本文提出了一种自组织tsk型模糊神经网络用于短时交通流预测。本文提出的模糊神经网络是根据收集到的短期交通流数据自适应组织的。整个过程分为结构识别和参数学习两个阶段。在结构识别中,采用均值偏移聚类算法对整个交通流数据集进行聚类生成初始结构,采用均值发射强度法对冗余模糊神经元进行修剪。在结构辨识完成后,采用混沌参数粒子群算法进行参数学习。将训练好的模糊神经网络应用于收集到的短期交通流测试集,预测结果验证了自组织tsk型模糊神经网络比一些传统方法具有更高的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Precise eye location in driver fatigue state surveillance system Modeling and implementation on the behavior of autonomous vehicle in the virtual traffic environment Analysis of schedulability of CAN based on RM algorithm A vibration-controlled resonant accelerometer design and its application to the single structured gyroscope/accelerometer system An algorithm based on SVM ensembles for motorcycle recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1