The improved clustering algorithm is used to analyze the data anomalies in the network environment

Xiaojia Lin
{"title":"The improved clustering algorithm is used to analyze the data anomalies in the network environment","authors":"Xiaojia Lin","doi":"10.1117/12.2674851","DOIUrl":null,"url":null,"abstract":"In this paper, an improved clustering algorithm is proposed and a heterogeneous model based on this model is developed. A new data extraction technology, such as data classification, network platform anomaly detection, distributed maximum frequent sequence extraction, comparison and mining of maximum frequent sequence data, is adopted. Through the comparison experiment, it is found that the algorithm can better reflect the correlation with the corresponding abnormal data types, and can better reflect the actual use of the algorithm.","PeriodicalId":286364,"journal":{"name":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Computer Graphics, Artificial Intelligence, and Data Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2674851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an improved clustering algorithm is proposed and a heterogeneous model based on this model is developed. A new data extraction technology, such as data classification, network platform anomaly detection, distributed maximum frequent sequence extraction, comparison and mining of maximum frequent sequence data, is adopted. Through the comparison experiment, it is found that the algorithm can better reflect the correlation with the corresponding abnormal data types, and can better reflect the actual use of the algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用改进的聚类算法对网络环境中的数据异常进行分析
本文提出了一种改进的聚类算法,并在此基础上建立了异构模型。采用了数据分类、网络平台异常检测、分布式最大频繁序列提取、最大频繁序列数据比较与挖掘等新的数据提取技术。通过对比实验,发现该算法能较好地反映与相应异常数据类型的相关性,能较好地反映算法的实际使用情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Size and defect detection of valve based on computer vision Research on quantitative evaluation method of test flight risk based on fuzzy theory Research on target grid investment optimization technology of medium- and low-voltage distribution network based on improved genetic algorithm Research on the analysis method of civil aircraft operational safety data Research on plum target detection based on improved YOLOv3 and jetson nano
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1