{"title":"A Low Rank Weighted Graph Convolutional Approach to Weather Prediction","authors":"T. Wilson, P. Tan, L. Luo","doi":"10.1109/ICDM.2018.00078","DOIUrl":null,"url":null,"abstract":"Weather forecasting is an important but challenging problem as one must contend with the inherent non-linearities and spatiotemporal autocorrelation present in the data. This paper presents a novel deep learning approach based on a coupled weighted graph convolutional LSTM (WGC-LSTM) to address these challenges. Specifically, our proposed approach uses an LSTM to capture the inherent temporal autocorrelation of the data and a graph convolution to model its spatial relationships. As the weather condition can be influenced by various spatial factors besides the distance between locations, e.g., topography, prevailing winds and jet streams, imposing a fixed graph structure based on the proximity between locations is insufficient to train a robust deep learning model. Instead, our proposed approach treats the adjacency matrix of the graph as a model parameter that can be learned from the training data. However, this introduces an additional O(|V|^2) parameters to be estimated, where V is the number of locations. With large graphs this may also lead to slower performance as well as susceptibility to overfitting. We propose a modified version of our approach that can address this difficulty by assuming that the adjacency matrix is either sparse or low rank. Experimental results using two real-world weather datasets show that WGC-LSTM outperforms all other baseline methods for the majority of the evaluated locations.","PeriodicalId":286444,"journal":{"name":"2018 IEEE International Conference on Data Mining (ICDM)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining (ICDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2018.00078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
Weather forecasting is an important but challenging problem as one must contend with the inherent non-linearities and spatiotemporal autocorrelation present in the data. This paper presents a novel deep learning approach based on a coupled weighted graph convolutional LSTM (WGC-LSTM) to address these challenges. Specifically, our proposed approach uses an LSTM to capture the inherent temporal autocorrelation of the data and a graph convolution to model its spatial relationships. As the weather condition can be influenced by various spatial factors besides the distance between locations, e.g., topography, prevailing winds and jet streams, imposing a fixed graph structure based on the proximity between locations is insufficient to train a robust deep learning model. Instead, our proposed approach treats the adjacency matrix of the graph as a model parameter that can be learned from the training data. However, this introduces an additional O(|V|^2) parameters to be estimated, where V is the number of locations. With large graphs this may also lead to slower performance as well as susceptibility to overfitting. We propose a modified version of our approach that can address this difficulty by assuming that the adjacency matrix is either sparse or low rank. Experimental results using two real-world weather datasets show that WGC-LSTM outperforms all other baseline methods for the majority of the evaluated locations.