A Reliable Semi-Supervised Intrusion Detection Model: One Year of Network Traffic Anomalies

E. Viegas, A. Santin, V. Cogo, Vilmar Abreu
{"title":"A Reliable Semi-Supervised Intrusion Detection Model: One Year of Network Traffic Anomalies","authors":"E. Viegas, A. Santin, V. Cogo, Vilmar Abreu","doi":"10.1109/ICC40277.2020.9148916","DOIUrl":null,"url":null,"abstract":"Despite the promising results of machine learning for network-based intrusion detection, current techniques are not widely deployed in real-world environments. In general, proposed detection models quickly become obsolete, thus, generating unreliable classifications over time. In this paper, we propose a new reliable model for semi-supervised intrusion detection that uses a verification technique to provide reliable classifications over time, even in the absence of model updates. Additionally, we cope with this verification technique with semi-supervised learning to autonomously update the underlying machine learning models without human assistance. Our experiments consider a full year of real network traffic and demonstrate that our solution maintains the accuracy rate over time without model updates while rejecting only 10.6% of instances on average. Moreover, when autonomous (non-human-assisted) model updates are performed, the average rejection rate drops to just 3.2% without affecting the accuracy of our solution.","PeriodicalId":106560,"journal":{"name":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICC 2020 - 2020 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC40277.2020.9148916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Despite the promising results of machine learning for network-based intrusion detection, current techniques are not widely deployed in real-world environments. In general, proposed detection models quickly become obsolete, thus, generating unreliable classifications over time. In this paper, we propose a new reliable model for semi-supervised intrusion detection that uses a verification technique to provide reliable classifications over time, even in the absence of model updates. Additionally, we cope with this verification technique with semi-supervised learning to autonomously update the underlying machine learning models without human assistance. Our experiments consider a full year of real network traffic and demonstrate that our solution maintains the accuracy rate over time without model updates while rejecting only 10.6% of instances on average. Moreover, when autonomous (non-human-assisted) model updates are performed, the average rejection rate drops to just 3.2% without affecting the accuracy of our solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种可靠的半监督入侵检测模型:一年的网络流量异常
尽管机器学习在基于网络的入侵检测方面取得了很好的成果,但目前的技术并没有广泛应用于现实环境。一般来说,建议的检测模型很快就会过时,因此,随着时间的推移,产生不可靠的分类。在本文中,我们为半监督入侵检测提出了一个新的可靠模型,该模型使用验证技术随着时间的推移提供可靠的分类,即使在没有模型更新的情况下。此外,我们用半监督学习来处理这种验证技术,在没有人工帮助的情况下自主更新底层机器学习模型。我们的实验考虑了一整年的真实网络流量,并证明我们的解决方案在没有模型更新的情况下保持准确率,同时平均只拒绝10.6%的实例。此外,当执行自主(非人工辅助)模型更新时,平均拒绝率降至3.2%,而不会影响我们解决方案的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Full Duplex MIMO Digital Beamforming with Reduced Complexity AUXTX Analog Cancellation Cognitive Management and Control of Optical Networks in Dynamic Environments Offloading Media Traffic to Programmable Data Plane Switches Simultaneous Transmitting and Air Computing for High-Speed Point-to-Point Wireless Communication A YouTube Dataset with User-level Usage Data: Baseline Characteristics and Key Insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1