GpuTejas: A parallel simulator for GPU architectures

Geetika Malhotra, Seep Goel, S. Sarangi
{"title":"GpuTejas: A parallel simulator for GPU architectures","authors":"Geetika Malhotra, Seep Goel, S. Sarangi","doi":"10.1109/HiPC.2014.7116897","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a new Java-based parallel GPGPU simulator, GpuTejas. GpuTejas is a fast trace driven simulator, which uses relaxed synchronization, and non-blocking data structures to derive its speedups. Secondly, it introduces a novel scheduling and partitioning scheme for parallelizing a GPU simulator. We evaluate the performance of our simulator with a set of Rodinia benchmarks. We demonstrate a mean speedup of 17.33x with 64 threads over sequential execution, and a speedup of 429X over the widely used simulator GPGPU-Sim. We validated our timing and simulation model by comparing our results with a native system (NVIDIA Tesla M2070). As compared to the sequential version of GpuTejas, the parallel version has an error limited to <;7.67% for our suite of benchmarks, which is similar to the numbers reported by competing parallel simulators.","PeriodicalId":337777,"journal":{"name":"2014 21st International Conference on High Performance Computing (HiPC)","volume":"74 8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 21st International Conference on High Performance Computing (HiPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2014.7116897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper, we introduce a new Java-based parallel GPGPU simulator, GpuTejas. GpuTejas is a fast trace driven simulator, which uses relaxed synchronization, and non-blocking data structures to derive its speedups. Secondly, it introduces a novel scheduling and partitioning scheme for parallelizing a GPU simulator. We evaluate the performance of our simulator with a set of Rodinia benchmarks. We demonstrate a mean speedup of 17.33x with 64 threads over sequential execution, and a speedup of 429X over the widely used simulator GPGPU-Sim. We validated our timing and simulation model by comparing our results with a native system (NVIDIA Tesla M2070). As compared to the sequential version of GpuTejas, the parallel version has an error limited to <;7.67% for our suite of benchmarks, which is similar to the numbers reported by competing parallel simulators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GpuTejas: GPU架构的并行模拟器
本文介绍了一种新的基于java的并行GPGPU模拟器GpuTejas。GpuTejas是一种快速跟踪驱动模拟器,它使用宽松的同步和非阻塞数据结构来获得其速度。其次,介绍了一种新的GPU模拟器并行化调度和分区方案。我们用一组Rodinia基准来评估模拟器的性能。我们演示了64线程顺序执行的平均加速速度为17.33x,在广泛使用的模拟器GPGPU-Sim上的加速速度为429X。我们通过将我们的结果与本地系统(NVIDIA Tesla M2070)进行比较来验证我们的时序和仿真模型。与连续版本的GpuTejas相比,在我们的基准测试套件中,并行版本的误差限制在< 7.67%,这与竞争的并行模拟器报告的数字相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and evaluation of parallel hashing over large-scale data Scaling graph community detection on the Tilera many-core architecture Cache-conscious scheduling of streaming pipelines on parallel machines with private caches A high performance broadcast design with hardware multicast and GPUDirect RDMA for streaming applications on Infiniband clusters Saving energy by exploiting residual imbalances on iterative applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1