Towards a new possibilistic collaborative filtering approach

Manel Slokom, R. Ayachi
{"title":"Towards a new possibilistic collaborative filtering approach","authors":"Manel Slokom, R. Ayachi","doi":"10.1109/CSCESM.2015.7331895","DOIUrl":null,"url":null,"abstract":"Collaborative filtering approaches exploit users preferences to provide items recommendations. These preferences describing the actual state of the item are generally certain. However, in real problems we can not ignore the importance of uncertainty. In this paper, we propose a purely possibilistic collaborative filtering approach that provides a recommendation list given uncertain preferences expressed by possibility distributions. Experimental results show that the proposed approach outperforms traditional collaborative filtering algorithm.","PeriodicalId":232149,"journal":{"name":"2015 Second International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Second International Conference on Computer Science, Computer Engineering, and Social Media (CSCESM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSCESM.2015.7331895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Collaborative filtering approaches exploit users preferences to provide items recommendations. These preferences describing the actual state of the item are generally certain. However, in real problems we can not ignore the importance of uncertainty. In this paper, we propose a purely possibilistic collaborative filtering approach that provides a recommendation list given uncertain preferences expressed by possibility distributions. Experimental results show that the proposed approach outperforms traditional collaborative filtering algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的可能性协同过滤方法
协同过滤方法利用用户的偏好来提供项目推荐。这些描述物品实际状态的偏好通常是确定的。然而,在现实问题中我们不能忽视不确定性的重要性。在本文中,我们提出了一种纯可能性协同过滤方法,该方法提供了一个由可能性分布表示的不确定偏好的推荐列表。实验结果表明,该方法优于传统的协同过滤算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The usage of social media in crisis communication Mechanism of critical and resilient digital services for design theory Fun Academic Cloud Computing Leveraging Complex Event Processing for supporting small and medium-sized e-commerce enterprises Modeling communicational and informational content in Facebook with context specific methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1