Yoshiaki Matsuoka, Shunsuke Inenaga, H. Bannai, M. Takeda, F. Manea
{"title":"Factorizing a String into Squares in Linear Time","authors":"Yoshiaki Matsuoka, Shunsuke Inenaga, H. Bannai, M. Takeda, F. Manea","doi":"10.4230/LIPIcs.CPM.2016.27","DOIUrl":null,"url":null,"abstract":"A square factorization of a string w is a factorization of w in which each factor is a square. Dumitran et al. [SPIRE 2015, pp. 54-66] showed how to find a square factorization of a given string of length n in O(n log n) time, and they posed a question whether it can be done in O(n) time. In this paper, we answer their question positively, showing an O(n)-time algorithm for square factorization in the standard word RAM model with machine word size omega = Omega(log n). We also show an O(n + (n log^2 n) / omega)-time (respectively, O(n log n)-time) algorithm to find a square factorization which contains the maximum (respectively, minimum) number of squares.","PeriodicalId":236737,"journal":{"name":"Annual Symposium on Combinatorial Pattern Matching","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Symposium on Combinatorial Pattern Matching","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.CPM.2016.27","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A square factorization of a string w is a factorization of w in which each factor is a square. Dumitran et al. [SPIRE 2015, pp. 54-66] showed how to find a square factorization of a given string of length n in O(n log n) time, and they posed a question whether it can be done in O(n) time. In this paper, we answer their question positively, showing an O(n)-time algorithm for square factorization in the standard word RAM model with machine word size omega = Omega(log n). We also show an O(n + (n log^2 n) / omega)-time (respectively, O(n log n)-time) algorithm to find a square factorization which contains the maximum (respectively, minimum) number of squares.