RMExplorer: A Visual Analytics Approach to Explore the Performance and the Fairness of Disease Risk Models on Population Subgroups

B. Kwon, U. Kartoun, S. Khurshid, Mikhail Yurochkin, Subha Maity, Deanna G. Brockman, A. Khera, P. Ellinor, S. Lubitz, Kenney Ng
{"title":"RMExplorer: A Visual Analytics Approach to Explore the Performance and the Fairness of Disease Risk Models on Population Subgroups","authors":"B. Kwon, U. Kartoun, S. Khurshid, Mikhail Yurochkin, Subha Maity, Deanna G. Brockman, A. Khera, P. Ellinor, S. Lubitz, Kenney Ng","doi":"10.1109/VIS54862.2022.00019","DOIUrl":null,"url":null,"abstract":"Disease risk models can identify high-risk patients and help clinicians provide more personalized care. However, risk models de-veloped on one dataset may not generalize across diverse subpop-ulations of patients in different datasets and may have unexpected performance. It is challenging for clinical researchers to inspect risk models across different subgroups without any tools. Therefore, we developed an interactive visualization system called RMExplorer (Risk Model Explorer) to enable interactive risk model assessment. Specifically, the system allows users to define subgroups of patients by selecting clinical, demographic, or other characteristics, to ex-plore the performance and fairness of risk models on the subgroups, and to understand the feature contributions to risk scores. To demonstrate the usefulness of the tool, we conduct a case study, where we use RMExplorer to explore three atrial fibrillation risk models by applying them to the UK Biobank dataset of 445,329 individuals. RMExplorer can help researchers to evaluate the performance and biases of risk models on subpopulations of interest in their data.","PeriodicalId":190244,"journal":{"name":"2022 IEEE Visualization and Visual Analytics (VIS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Visualization and Visual Analytics (VIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VIS54862.2022.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Disease risk models can identify high-risk patients and help clinicians provide more personalized care. However, risk models de-veloped on one dataset may not generalize across diverse subpop-ulations of patients in different datasets and may have unexpected performance. It is challenging for clinical researchers to inspect risk models across different subgroups without any tools. Therefore, we developed an interactive visualization system called RMExplorer (Risk Model Explorer) to enable interactive risk model assessment. Specifically, the system allows users to define subgroups of patients by selecting clinical, demographic, or other characteristics, to ex-plore the performance and fairness of risk models on the subgroups, and to understand the feature contributions to risk scores. To demonstrate the usefulness of the tool, we conduct a case study, where we use RMExplorer to explore three atrial fibrillation risk models by applying them to the UK Biobank dataset of 445,329 individuals. RMExplorer can help researchers to evaluate the performance and biases of risk models on subpopulations of interest in their data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RMExplorer:一种可视化分析方法,用于探索疾病风险模型在人口亚组上的性能和公平性
疾病风险模型可以识别高危患者,帮助临床医生提供更个性化的护理。然而,在一个数据集上开发的风险模型可能无法推广到不同数据集的不同患者亚群,并且可能具有意想不到的性能。临床研究人员在没有任何工具的情况下检查不同亚组的风险模型是具有挑战性的。因此,我们开发了一个名为RMExplorer (Risk Model Explorer)的交互式可视化系统来实现交互式风险模型评估。具体来说,该系统允许用户通过选择临床、人口统计学或其他特征来定义患者的亚组,以探索风险模型在亚组上的性能和公平性,并了解特征对风险评分的贡献。为了证明该工具的实用性,我们进行了一个案例研究,在该研究中,我们使用RMExplorer通过将其应用于英国生物银行的445,329个人数据集来探索三种房颤风险模型。RMExplorer可以帮助研究人员评估其数据中感兴趣的亚群风险模型的性能和偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paths Through Spatial Networks Explaining Website Reliability by Visualizing Hyperlink Connectivity Volume Puzzle: visual analysis of segmented volume data with multivariate attributes VIS 2022 Program Committee The role of extended reality for planning coronary artery bypass graft surgery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1