Case Study: Small-Scale Hybrid Integrated Renewable Energy System (HI-RES): Emergency Mobile Backup Power Generation Station

J. Weber, David Wenzhong-Gao, John Zhai
{"title":"Case Study: Small-Scale Hybrid Integrated Renewable Energy System (HI-RES): Emergency Mobile Backup Power Generation Station","authors":"J. Weber, David Wenzhong-Gao, John Zhai","doi":"10.1109/GREENTECH.2013.15","DOIUrl":null,"url":null,"abstract":"The concept of examining the feasibility of small-scale integrated hybrid renewable energy systems for mobile backup power generation has expanded greatly over the past decade. Increases in large scale power outages have become a common theme across America and other parts of the world as a result of natural disasters such as earthquakes, floods, hurricanes, and other extreme environmental conditions. These outages often disrupt commerce, business, and the quality of life for many of the consumers impacted including loss of life and significant cost to the tax payers in mitigating the effects of these disruptions. In addition, increasingly hostile social climates and threats of war have exposed the need for more reliable small scale backup power plants (both renewable and non-renewable) integrated to rapid recovery systems. As greater emphasis is placed on reducing the green house effect and the emissions of pollutants into the environment, major technological advancements in renewable energy is driving innovative approaches to improving Energy Returned On Energy Invested (EROEI), thus enabling a stronger business case for renewable over strictly non-renewable power generation systems, including mobile backup hybrid renewable power generation capabilities.","PeriodicalId":311325,"journal":{"name":"2013 IEEE Green Technologies Conference (GreenTech)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GREENTECH.2013.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The concept of examining the feasibility of small-scale integrated hybrid renewable energy systems for mobile backup power generation has expanded greatly over the past decade. Increases in large scale power outages have become a common theme across America and other parts of the world as a result of natural disasters such as earthquakes, floods, hurricanes, and other extreme environmental conditions. These outages often disrupt commerce, business, and the quality of life for many of the consumers impacted including loss of life and significant cost to the tax payers in mitigating the effects of these disruptions. In addition, increasingly hostile social climates and threats of war have exposed the need for more reliable small scale backup power plants (both renewable and non-renewable) integrated to rapid recovery systems. As greater emphasis is placed on reducing the green house effect and the emissions of pollutants into the environment, major technological advancements in renewable energy is driving innovative approaches to improving Energy Returned On Energy Invested (EROEI), thus enabling a stronger business case for renewable over strictly non-renewable power generation systems, including mobile backup hybrid renewable power generation capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
案例研究:小型混合集成可再生能源系统(HI-RES):应急移动备用发电站
在过去十年中,研究小型综合混合可再生能源系统用于移动备用发电的可行性的概念得到了极大的扩展。由于地震、洪水、飓风和其他极端环境条件等自然灾害,大规模停电的增加已成为美国和世界其他地区的共同主题。这些中断通常会破坏商业、业务和许多受影响消费者的生活质量,包括生命损失和纳税人在减轻这些中断影响方面的重大成本。此外,日益恶劣的社会气候和战争威胁暴露了对更可靠的小型备用发电厂(可再生和不可再生)的需求,这些备用发电厂与快速恢复系统相结合。随着人们越来越重视减少温室效应和污染物排放到环境中,可再生能源领域的重大技术进步正在推动创新方法,以提高能源投资回报率(EROEI),从而使可再生能源的商业案例比严格不可再生的发电系统更强大,包括移动备用混合可再生能源发电能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Micro Behavior Information Decision Research in An ABM Traffic and Energy Model Using Electricity Market Analytics to Reduce Cost and Environmental Impact A New Class of Light-Traps for Nano-enhanced Photovoltaic Conversion Modeling DFIG Using General Vector Representation in the Presence of Harmonics A Linear Programming Methodology to Quantify the Impact of PHEVs with V2G Capabilities on Distribution Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1