Efficient HEVC decoder for heterogeneous CPU with GPU systems

Biao Wang, M. Alvarez-Mesa, C. C. Chi, B. Juurlink, D. Souza, A. Ilic, N. Roma, L. Sousa
{"title":"Efficient HEVC decoder for heterogeneous CPU with GPU systems","authors":"Biao Wang, M. Alvarez-Mesa, C. C. Chi, B. Juurlink, D. Souza, A. Ilic, N. Roma, L. Sousa","doi":"10.1109/MMSP.2016.7813353","DOIUrl":null,"url":null,"abstract":"The High Efficiency Video Coding (HEVC) standard provides higher compression efficiency than other video coding standards but at the cost of increased computational load, which makes it hard to achieve real-time encoding/decoding of high-resolution, high-quality video sequences. In this paper, we investigate how Graphics Processing Units (GPUs) can be employed to accelerate HEVC decoding. GPUs are known to provide massive processing capability for throughput computing kernels, but the HEVC entropy decoding kernel cannot be executed efficiently on GPUs. We therefore propose a complete HEVC decoding solution for heterogeneous CPU+GPU systems, in which the entropy decoder is executed on the CPU and the remaining kernels on the GPU. Furthermore, the decoder is pipelined such that the CPU and the GPU can decode different frames in parallel. The proposed CPU+GPU decoder achieves an average frame rate of 150 frames per second for Ultra HD 4K video sequences when four CPU cores are used with an NVIDIA GeForce Titan X GPU.","PeriodicalId":113192,"journal":{"name":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 18th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2016.7813353","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The High Efficiency Video Coding (HEVC) standard provides higher compression efficiency than other video coding standards but at the cost of increased computational load, which makes it hard to achieve real-time encoding/decoding of high-resolution, high-quality video sequences. In this paper, we investigate how Graphics Processing Units (GPUs) can be employed to accelerate HEVC decoding. GPUs are known to provide massive processing capability for throughput computing kernels, but the HEVC entropy decoding kernel cannot be executed efficiently on GPUs. We therefore propose a complete HEVC decoding solution for heterogeneous CPU+GPU systems, in which the entropy decoder is executed on the CPU and the remaining kernels on the GPU. Furthermore, the decoder is pipelined such that the CPU and the GPU can decode different frames in parallel. The proposed CPU+GPU decoder achieves an average frame rate of 150 frames per second for Ultra HD 4K video sequences when four CPU cores are used with an NVIDIA GeForce Titan X GPU.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效HEVC解码器的异构CPU与GPU系统
HEVC (High Efficiency Video Coding)标准提供了比其他视频编码标准更高的压缩效率,但其代价是计算量的增加,这使得高分辨率、高质量视频序列的实时编码/解码难以实现。在本文中,我们研究如何使用图形处理器(gpu)来加速HEVC解码。众所周知,gpu为吞吐量计算内核提供了大量的处理能力,但HEVC熵解码内核无法在gpu上高效执行。因此,我们提出了一种完整的HEVC解码解决方案,用于异构CPU+GPU系统,其中熵解码器在CPU上执行,其余内核在GPU上执行。此外,解码器是流水线的,这样CPU和GPU可以并行解码不同的帧。当四个CPU内核与NVIDIA GeForce Titan X GPU一起使用时,所提出的CPU+GPU解码器实现了每秒150帧的超高清4K视频序列的平均帧率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generalized dirichlet mixture matching projection for supervised linear dimensionality reduction of proportional data Mobile live streaming: Insights from the periscope service Low-power distributed sparse recovery testbed on wireless sensor networks Laughter detection based on the fusion of local binary patterns, spectral and prosodic features An embedded 3D geometry score for mobile 3D visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1