LEFTMOST EIGENVALUE OF REAL AND COMPLEX SPARSE MATRICES ON PARALLEL COMPUTER USING APPROXIMATE INVERSE PRECONDITIONING

G. Pini
{"title":"LEFTMOST EIGENVALUE OF REAL AND COMPLEX SPARSE MATRICES ON PARALLEL COMPUTER USING APPROXIMATE INVERSE PRECONDITIONING","authors":"G. Pini","doi":"10.1080/10637190208941433","DOIUrl":null,"url":null,"abstract":"An efficient parallel approach for the computation of the eigenvalue of smallest absolute magnitude of sparse real and complex matrices is provided. The proposed strategy tries to improve the efficiency of the reverse power method. At each inverse power iteration the linear system is solved either by the conjugate gradient scheme (symmetric case) or by the Bi-CGSTAB method (symmetric case). Both solvers are preconditioned employing the approximate inverse factorization and thus are easily parallelized. The satisfactory speed-ups obtained on the CRAY T3E supercomputer show the high degree of parallelization reached by the proposed algorithm.","PeriodicalId":406098,"journal":{"name":"Parallel Algorithms and Applications","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Algorithms and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10637190208941433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An efficient parallel approach for the computation of the eigenvalue of smallest absolute magnitude of sparse real and complex matrices is provided. The proposed strategy tries to improve the efficiency of the reverse power method. At each inverse power iteration the linear system is solved either by the conjugate gradient scheme (symmetric case) or by the Bi-CGSTAB method (symmetric case). Both solvers are preconditioned employing the approximate inverse factorization and thus are easily parallelized. The satisfactory speed-ups obtained on the CRAY T3E supercomputer show the high degree of parallelization reached by the proposed algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近似逆预处理在并行计算机上求实和复稀疏矩阵的最左特征值
给出了一种计算稀疏实矩阵和复矩阵最小绝对值特征值的有效并行方法。提出的策略试图提高反向功率法的效率。在每次逆幂次迭代中,线性系统要么用共轭梯度格式(对称情况)求解,要么用Bi-CGSTAB方法(对称情况)求解。这两种解都采用近似逆分解进行了预处理,因此很容易并行化。在CRAY T3E超级计算机上获得了令人满意的加速,表明该算法达到了很高的并行化程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and scalable parallel matrix computations with reconfigurable pipelined optical buses A comparative study of explicit group iterative solvers on a cluster of workstations FPGA implementation of a Cholesky algorithm for a shared-memory multiprocessor architecture Application of MPI-IO in Parallel Particle Transport Monte-Carlo Simulation Cost-effective modeling for natural resource distribution systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1