Development of IIITH Hindi-English Code Mixed Speech Database

B. Rambabu, S. Gangashetty
{"title":"Development of IIITH Hindi-English Code Mixed Speech Database","authors":"B. Rambabu, S. Gangashetty","doi":"10.21437/SLTU.2018-23","DOIUrl":null,"url":null,"abstract":"This paper presents the design and development of IIITH Hindi-English code mixed (IIITH-HE-CM) text and corresponding speech corpus. The corpus is collected from several Hindi native speakers from different geographical parts of India. The IIITH-HE-CM corpus has phonetically balanced code mixed sentences with all the phoneme coverage of Hindi and English languages. We used triphone frequency of word internal triphone sequence, consists the language specific information, which helps in code mixed speech recognition and language modelling. The code mixed sentences are written in Devanagari script. Since computers can recognize Roman symbols, we used Indian Language Speech Sound Label (ILSL) transcription. An acoustic model is built for Hindi-English mixed language in-stead of language-dependent models. A large vocabulary code-mixing speech recognition system is developed based on a deep neural network (DNN) architecture. The proposed code-mixed speech recognition system attains low word error rate (WER) compared to conventional system.","PeriodicalId":190269,"journal":{"name":"Workshop on Spoken Language Technologies for Under-resourced Languages","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Spoken Language Technologies for Under-resourced Languages","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SLTU.2018-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the design and development of IIITH Hindi-English code mixed (IIITH-HE-CM) text and corresponding speech corpus. The corpus is collected from several Hindi native speakers from different geographical parts of India. The IIITH-HE-CM corpus has phonetically balanced code mixed sentences with all the phoneme coverage of Hindi and English languages. We used triphone frequency of word internal triphone sequence, consists the language specific information, which helps in code mixed speech recognition and language modelling. The code mixed sentences are written in Devanagari script. Since computers can recognize Roman symbols, we used Indian Language Speech Sound Label (ILSL) transcription. An acoustic model is built for Hindi-English mixed language in-stead of language-dependent models. A large vocabulary code-mixing speech recognition system is developed based on a deep neural network (DNN) architecture. The proposed code-mixed speech recognition system attains low word error rate (WER) compared to conventional system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
IIITH印英码混合语音数据库的开发
本文介绍了IIITH印英混合码(IIITH- he - cm)文本和相应语音语料库的设计与开发。该语料库收集了来自印度不同地理区域的几个印地语母语人士。IIITH-HE-CM语料库具有语音平衡的代码混合句子,具有印地语和英语语言的所有音素覆盖。我们使用三音频率的词内部三音序列,组成语言的特定信息,这有助于代码混合语音识别和语言建模。代码混合语句是用梵文书写的。由于计算机可以识别罗马符号,我们使用了印度语言语音标签(ILSL)转录。在此基础上,建立了一种针对印英混合语言的声学模型,而不是基于语言的模型。提出了一种基于深度神经网络(DNN)的大词汇量混码语音识别系统。与传统语音识别系统相比,该系统具有较低的单词错误率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Corpus of the Sorani Kurdish Folkloric Lyrics A Sentiment Analysis Dataset for Code-Mixed Malayalam-English Corpus Creation for Sentiment Analysis in Code-Mixed Tamil-English Text Text Normalization for Bangla, Khmer, Nepali, Javanese, Sinhala and Sundanese Text-to-Speech Systems Crowd-Sourced Speech Corpora for Javanese, Sundanese, Sinhala, Nepali, and Bangladeshi Bengali
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1