ABC: Abstract prediction Before Concreteness

Jung-Eun Kim, Richard M. Bradford, Man-Ki Yoon, Zhong Shao
{"title":"ABC: Abstract prediction Before Concreteness","authors":"Jung-Eun Kim, Richard M. Bradford, Man-Ki Yoon, Zhong Shao","doi":"10.23919/DATE48585.2020.9116479","DOIUrl":null,"url":null,"abstract":"Learning techniques are advancing the utility and capability of modern embedded systems. However, the challenge of incorporating learning modules into embedded systems is that computing resources are scarce. For such a resource-constrained environment, we have developed a framework for learning abstract information early and learning more concretely as time allows. The intermediate results can be utilized to prepare for early decisions/actions as needed. To apply this framework to a classification task, the datasets are categorized in an abstraction hierarchy. Then the framework classifies intermediate labels from the most abstract level to the most concrete. Our proposed method outperforms the existing approaches and reference baselines in terms of accuracy. We show our framework with different architectures and on various benchmark datasets CIFAR-10, CIFAR-100, and GTSRB. We measure prediction times on GPUequipped embedded computing platforms as well.","PeriodicalId":289525,"journal":{"name":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE48585.2020.9116479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Learning techniques are advancing the utility and capability of modern embedded systems. However, the challenge of incorporating learning modules into embedded systems is that computing resources are scarce. For such a resource-constrained environment, we have developed a framework for learning abstract information early and learning more concretely as time allows. The intermediate results can be utilized to prepare for early decisions/actions as needed. To apply this framework to a classification task, the datasets are categorized in an abstraction hierarchy. Then the framework classifies intermediate labels from the most abstract level to the most concrete. Our proposed method outperforms the existing approaches and reference baselines in terms of accuracy. We show our framework with different architectures and on various benchmark datasets CIFAR-10, CIFAR-100, and GTSRB. We measure prediction times on GPUequipped embedded computing platforms as well.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ABC:抽象预测先于具体
学习技术正在提高现代嵌入式系统的实用性和性能。然而,将学习模块整合到嵌入式系统的挑战在于计算资源是稀缺的。对于这样一个资源受限的环境,我们已经开发了一个框架,用于早期学习抽象信息,并在时间允许的情况下学习更具体的信息。中间结果可用于根据需要为早期决策/行动做准备。为了将此框架应用于分类任务,数据集在抽象层次结构中进行分类。然后,该框架将中间标签从最抽象的层次分类到最具体的层次。我们提出的方法在精度方面优于现有的方法和参考基线。我们在不同的架构和不同的基准数据集CIFAR-10、CIFAR-100和GTSRB上展示了我们的框架。我们还在配备gpu的嵌入式计算平台上测量预测时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-Memory Resistive RAM Implementation of Binarized Neural Networks for Medical Applications Towards Formal Verification of Optimized and Industrial Multipliers A 100KHz-1GHz Termination-dependent Human Body Communication Channel Measurement using Miniaturized Wearable Devices Computational SRAM Design Automation using Pushed-Rule Bitcells for Energy-Efficient Vector Processing PIM-Aligner: A Processing-in-MRAM Platform for Biological Sequence Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1