Motion planning using fuzzy logic control with minimum sensors

Ho Yim, A. Butler
{"title":"Motion planning using fuzzy logic control with minimum sensors","authors":"Ho Yim, A. Butler","doi":"10.1109/ISIC.1995.525114","DOIUrl":null,"url":null,"abstract":"A new exploratory motion planning technique for a mobile robot is described and demonstrated using a fuzzy logic control (FLC) approach with two distance sensors. The fuzzy logic controller determines steering direction for a four wheel mobile robot based on distance from each sensor to the nearest obstacle ahead of the robot. Changes in steering direction are developed using Mamdani's Minimum Operation Rule and Center of Area (COA) defuzzification. The overall motion planning strategy is described and results from testing are discussed. It is believed that the FLC approach may offer advantages over other exploratory methods.","PeriodicalId":219623,"journal":{"name":"Proceedings of Tenth International Symposium on Intelligent Control","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Tenth International Symposium on Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1995.525114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

A new exploratory motion planning technique for a mobile robot is described and demonstrated using a fuzzy logic control (FLC) approach with two distance sensors. The fuzzy logic controller determines steering direction for a four wheel mobile robot based on distance from each sensor to the nearest obstacle ahead of the robot. Changes in steering direction are developed using Mamdani's Minimum Operation Rule and Center of Area (COA) defuzzification. The overall motion planning strategy is described and results from testing are discussed. It is believed that the FLC approach may offer advantages over other exploratory methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑控制的最小传感器运动规划
描述并演示了一种新的移动机器人探索性运动规划技术,该技术采用模糊逻辑控制(FLC)方法和两个距离传感器。模糊逻辑控制器根据每个传感器到机器人前方最近障碍物的距离来确定四轮移动机器人的转向方向。使用Mamdani最小操作规则和区域中心(COA)去模糊化来开发转向方向的变化。描述了整体运动规划策略,并讨论了测试结果。人们相信FLC方法可能比其他探索性方法具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
State representation and transfer function of a class of variable speed continuous Petri nets Experimental evaluation of an Encoder Trailer for dead-reckoning in tracked mobile robots A virtual reality based interface to a dynamic resource allocation scheduler Dynamic recurrent neural networks for modeling flexible robot dynamics Fuzzy logic controller for automatic vision parameter adjustment in a robotic dish handling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1