Mammogram Image Classification Using Various Machine Learning Algorithms

Arpita Joshi, A. Mehta
{"title":"Mammogram Image Classification Using Various Machine Learning Algorithms","authors":"Arpita Joshi, A. Mehta","doi":"10.1109/ICCCS55188.2022.10079398","DOIUrl":null,"url":null,"abstract":"The leading cause of death in women is still breast cancer.Detecting cancer in its early stages is crucial. For the purpose of diagnosing breast cancer data, a variety of machine learning algorithms are available.In this study, performance comparisons between different machine learning algorithms: Extra Trees, Random Forest, Support Vector Machine (SVM),Decision Tree, Logistic Regression Bagging, Gradient Boosting, and AdaBoost have been conducted on mammography images of MIAS(Mammographic Image Analysis Society) database.It is observed that Bagging outperformed all other algorithms and achieved the highest accuracy (0.9678).All the work is done in the Kaggle environment based on the python programming language.","PeriodicalId":149615,"journal":{"name":"2022 7th International Conference on Computing, Communication and Security (ICCCS)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Computing, Communication and Security (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS55188.2022.10079398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The leading cause of death in women is still breast cancer.Detecting cancer in its early stages is crucial. For the purpose of diagnosing breast cancer data, a variety of machine learning algorithms are available.In this study, performance comparisons between different machine learning algorithms: Extra Trees, Random Forest, Support Vector Machine (SVM),Decision Tree, Logistic Regression Bagging, Gradient Boosting, and AdaBoost have been conducted on mammography images of MIAS(Mammographic Image Analysis Society) database.It is observed that Bagging outperformed all other algorithms and achieved the highest accuracy (0.9678).All the work is done in the Kaggle environment based on the python programming language.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用各种机器学习算法的乳房x光图像分类
妇女死亡的主要原因仍然是乳腺癌。在早期发现癌症是至关重要的。为了诊断乳腺癌数据,有各种各样的机器学习算法可用。在本研究中,对不同机器学习算法:Extra Trees、Random Forest、Support Vector machine (SVM)、Decision Tree、Logistic Regression Bagging、Gradient Boosting和AdaBoost在MIAS(乳房摄影图像分析协会)数据库的乳房摄影图像进行了性能比较。观察到Bagging优于所有其他算法,达到了最高的准确率(0.9678)。所有工作都是在基于python编程语言的Kaggle环境中完成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Internet of Things: A Survey on Air Pollution Monitoring, Challenges and Applications Blockchain in HRM:Application and Future Perspective A Study on Exploit Development A comparative analysis of stock price prediction techniques Internet of things (IoT) applications and Challenges: A Study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1