Propellant Consumption-Optimized Lunar Landing Using Signals from Circumlunar Satellite Navigation

E. Mikrin, I. V. Orlovskii, I. A. Krasnopol’skii, M. Mikhailov, S. Rozhkov
{"title":"Propellant Consumption-Optimized Lunar Landing Using Signals from Circumlunar Satellite Navigation","authors":"E. Mikrin, I. V. Orlovskii, I. A. Krasnopol’skii, M. Mikhailov, S. Rozhkov","doi":"10.23919/icins43215.2020.9133923","DOIUrl":null,"url":null,"abstract":"The paper reviews a possible lunar mission architecture, where lunar modules are integrated on the lunar Orbital Station (OS), placed in a high lunar orbit (HLO). It discusses the concept of transfers from HLO to an intermediate low lunar orbit (LLO), transfer to a descent orbit, landing at a designated point on the Moon, and return to the OS. An approach was defined, and algorithms were determined and run in simulations for rough and fine control during various phases of the flight. An approach was defined for implementing propellant consumption-optimized descent from LLO to the designated landing target, the lowest possible value for the braking burn required for the descent was defined. Algorithms were developed for quasi-optimal descent during braking phase using measurements from lunar navigation satellites, with the braking burn value which is close to the optimal landing. Relationship between the braking burn and the ratio of the engine thrust to the mass of the Lunar Ascent/Descent Vehicle (LADV) was studied. Relationship between the braking burn of the quasi-optimal landing and the ratio of the engine thrust to the mass of LADV was studied. An approach to and control algorithms for providing operator support for lunar landing were developed, which provide the capability to visually asses the suitability of the landing target from the standpoint of landing safety and, if need be, the ability for the operator to intervene into the control process in order to move the landing target to a safer site.","PeriodicalId":127936,"journal":{"name":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 27th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/icins43215.2020.9133923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The paper reviews a possible lunar mission architecture, where lunar modules are integrated on the lunar Orbital Station (OS), placed in a high lunar orbit (HLO). It discusses the concept of transfers from HLO to an intermediate low lunar orbit (LLO), transfer to a descent orbit, landing at a designated point on the Moon, and return to the OS. An approach was defined, and algorithms were determined and run in simulations for rough and fine control during various phases of the flight. An approach was defined for implementing propellant consumption-optimized descent from LLO to the designated landing target, the lowest possible value for the braking burn required for the descent was defined. Algorithms were developed for quasi-optimal descent during braking phase using measurements from lunar navigation satellites, with the braking burn value which is close to the optimal landing. Relationship between the braking burn and the ratio of the engine thrust to the mass of the Lunar Ascent/Descent Vehicle (LADV) was studied. Relationship between the braking burn of the quasi-optimal landing and the ratio of the engine thrust to the mass of LADV was studied. An approach to and control algorithms for providing operator support for lunar landing were developed, which provide the capability to visually asses the suitability of the landing target from the standpoint of landing safety and, if need be, the ability for the operator to intervene into the control process in order to move the landing target to a safer site.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于环月卫星导航信号的推进剂消耗优化月球着陆
本文回顾了一种可能的月球任务架构,其中月球模块集成在月球轨道站(OS)上,放置在月球高轨道(HLO)上。讨论了从HLO转移到中低月球轨道(LLO),转移到下降轨道,在月球上指定点着陆,返回操作系统的概念。定义了一种方法,确定了算法,并在模拟中运行了飞行各个阶段的粗控和精控。定义了一种从LLO降至指定着陆目标的推进剂消耗优化方法,确定了降至指定着陆目标所需制动燃烧的最低可能值。利用月球导航卫星的测量数据,开发了制动阶段的准最优下降算法,使制动燃烧值接近最优着陆。研究了月球上升/下降飞行器制动燃烧与发动机推力质量比之间的关系。研究了准最优着陆时的制动燃烧与发动机推力与LADV质量比的关系。开发了一种为月球着陆提供操作员支持的方法和控制算法,它提供了从着陆安全的角度直观评估着陆目标适用性的能力,如果需要,操作员可以干预控制过程,以便将着陆目标移动到更安全的地点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Localization of a Ground Vehicle Using a Monocamera and Geodesic-Bound Road Signs Optimization of Data Pre-Processing for Compensation of Temperature Dependence of FOG bias by a Neural Network Construction of a Three-Pulse Approach to Phobos Trajectories with Access to the Mars Hill Sphere Based on the Solution of a Series of Lambert's Problems Setup for Measuring Complex Coupling Parameters in Laser Gyro Ring Cavity Implementation of the Algorithm for Estimating the State Vector of a Dynamic System in Undefined Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1