A Dynamic Programming Technique for Classifying Trajectories

S. Calderara, R. Cucchiara, A. Prati
{"title":"A Dynamic Programming Technique for Classifying Trajectories","authors":"S. Calderara, R. Cucchiara, A. Prati","doi":"10.1109/ICIAP.2007.6","DOIUrl":null,"url":null,"abstract":"This paper proposes the exploitation of a dynamic programming technique for efficiently comparing people trajectories adopting an encoding scheme that jointly takes into account both the direction and the velocity of movement. With this approach, each pair of trajectories in the training set is compared and the corresponding distance computed. Clustering is achieved by using the k-medoids algorithm and each cluster is modeled with a 1-D Gaussian over the distance from the medoid. A MAP framework is adopted for the testing phase. The reported results are encouraging.","PeriodicalId":118466,"journal":{"name":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"14th International Conference on Image Analysis and Processing (ICIAP 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAP.2007.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper proposes the exploitation of a dynamic programming technique for efficiently comparing people trajectories adopting an encoding scheme that jointly takes into account both the direction and the velocity of movement. With this approach, each pair of trajectories in the training set is compared and the corresponding distance computed. Clustering is achieved by using the k-medoids algorithm and each cluster is modeled with a 1-D Gaussian over the distance from the medoid. A MAP framework is adopted for the testing phase. The reported results are encouraging.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种轨迹分类的动态规划技术
本文提出了一种动态规划技术,采用一种同时考虑运动方向和运动速度的编码方案来有效地比较人的运动轨迹。利用这种方法,对训练集中的每对轨迹进行比较,并计算相应的距离。聚类是通过k-medoids算法实现的,每个聚类都是在距离medoids的距离上用一维高斯模型建模的。测试阶段采用MAP框架。报告的结果令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real-time Gesture Recognition in Advanced Videocommunication Services Corner Displacement from Motion Blur A Method of Clustering Combination Applied to Satellite Image Analysis Sight enhancement through video fusion in a surveillance system Robust Iris Localization and Tracking based on Constrained Visual Fitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1