Laser generated high-pressure shock wave experiments and their simulations

V. Senecha, M. Shukla, B. K. Godwal, H. C. Pant
{"title":"Laser generated high-pressure shock wave experiments and their simulations","authors":"V. Senecha, M. Shukla, B. K. Godwal, H. C. Pant","doi":"10.1117/12.534320","DOIUrl":null,"url":null,"abstract":"Laser driven shock wave experiments were performed to study the equation of state (EOS) of Cu material using impedance-matching technique with Al as reference material. An Nd:YAG laser chain (2 Joule, 1.06 μm wavelength, 200 ps pulse FWHM) was used for generating shocks in the planar Al foils and Al-Cu layered targets. EOS of materials at shock pressure up to 11 Mbar is obtained with pressure enhancement by a factor of 1.67 at Al-Cu interface. Numerical simulations performed using one-dimensional radiation hydrodynamic code MULTI show close agreement with the experimental value of shock pressure enhancement. Simulation reveals the fact that 5 - 6 μm thickness of Al foil as a reference material is sufficient to prevent the x-ray preheating effect as well as to attain planar and steady shock wave propagation for a given laser beam used in the experiment. The experimental Hugoniot data points obtained are in excellent agreement with the existing standard SESAME data and with other reported experimental results.","PeriodicalId":340981,"journal":{"name":"European Conference on Laser Interaction with Matter","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Conference on Laser Interaction with Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.534320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Laser driven shock wave experiments were performed to study the equation of state (EOS) of Cu material using impedance-matching technique with Al as reference material. An Nd:YAG laser chain (2 Joule, 1.06 μm wavelength, 200 ps pulse FWHM) was used for generating shocks in the planar Al foils and Al-Cu layered targets. EOS of materials at shock pressure up to 11 Mbar is obtained with pressure enhancement by a factor of 1.67 at Al-Cu interface. Numerical simulations performed using one-dimensional radiation hydrodynamic code MULTI show close agreement with the experimental value of shock pressure enhancement. Simulation reveals the fact that 5 - 6 μm thickness of Al foil as a reference material is sufficient to prevent the x-ray preheating effect as well as to attain planar and steady shock wave propagation for a given laser beam used in the experiment. The experimental Hugoniot data points obtained are in excellent agreement with the existing standard SESAME data and with other reported experimental results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激光产生高压激波的实验与模拟
采用阻抗匹配技术,以Al为参比材料,进行了激光驱动激波实验,研究了Cu材料的状态方程。利用Nd:YAG激光链(2焦耳,波长1.06 μm,脉冲FWHM 200ps)在平面Al箔和Al- cu层状靶上产生激波。在冲击压力高达11 Mbar时,材料的EOS在Al-Cu界面上的压力增加了1.67倍。利用一维辐射流体动力代码MULTI进行的数值模拟结果与激波压力增强的实验值吻合较好。仿真结果表明,对于实验中使用的给定激光束,5 ~ 6 μm厚度的Al箔作为基准材料足以防止x射线的预热效应,并达到平面和稳定的冲击波传播。获得的Hugoniot实验数据点与现有的标准SESAME数据和其他报道的实验结果非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical models of hot dense plasmas for laser and heavy ion target designs Spectrum linewidth of SBS in collisionless plasma with two species of ions Filling of glass microshells with heavy gases by radiation-simulated diffusion Recent theoretical and experimental results on inertial fusion energy physics Theoretical-numerical research of fast ignition in nondegenerate plasma at inertial fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1