Image-based Parking Place Identification for Regulating Shared Bicycle Parking

Shudong Xie, Yiqun Li, Qianli Xu, Fen Fang, Liyuan Li
{"title":"Image-based Parking Place Identification for Regulating Shared Bicycle Parking","authors":"Shudong Xie, Yiqun Li, Qianli Xu, Fen Fang, Liyuan Li","doi":"10.1109/ICARCV.2018.8581276","DOIUrl":null,"url":null,"abstract":"We propose a novel method and system to prevent indiscriminate parking of dockless shared bicycles using location-based geo-fencing and image-based parking place identification. The geo-fencing is used to define the approximate regions for different types of bicycle parking regulations. The parking place identification uses a method based on deep Convolutional Neural Network (DCNN) to automatically identify designated bicycle parking places from photos captured by the cyclist using a mobile phone. Combining these two modalities, the parking of shared bicycles can be restricted in designated zones in various environments. Experiments are conducted using photos taken from the designated parking places with different parking indications at various locations. We evaluate the performance of the image-based parking place identification and use heatmaps to analyze potential features that are exploit by the DCNN models. The method achieves high performance on the testing dataset; and the features used for parking place identification are largely consistent with human perceptions.","PeriodicalId":395380,"journal":{"name":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Conference on Control, Automation, Robotics and Vision (ICARCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2018.8581276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We propose a novel method and system to prevent indiscriminate parking of dockless shared bicycles using location-based geo-fencing and image-based parking place identification. The geo-fencing is used to define the approximate regions for different types of bicycle parking regulations. The parking place identification uses a method based on deep Convolutional Neural Network (DCNN) to automatically identify designated bicycle parking places from photos captured by the cyclist using a mobile phone. Combining these two modalities, the parking of shared bicycles can be restricted in designated zones in various environments. Experiments are conducted using photos taken from the designated parking places with different parking indications at various locations. We evaluate the performance of the image-based parking place identification and use heatmaps to analyze potential features that are exploit by the DCNN models. The method achieves high performance on the testing dataset; and the features used for parking place identification are largely consistent with human perceptions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图像的共享单车停放场所识别
本文提出了一种利用基于位置的地理围栏和基于图像的停车位识别来防止无桩共享单车乱停的新方法和系统。利用地理围栏来界定不同类型自行车停放规则的近似区域。停车位置识别采用基于深度卷积神经网络(DCNN)的方法,从骑自行车者用手机拍摄的照片中自动识别指定的自行车停车位。结合这两种方式,可以在各种环境下将共享单车限定在指定区域内停放。实验采用在指定的停车地点拍摄的照片,在不同地点有不同的停车标志。我们评估了基于图像的停车位识别的性能,并使用热图分析了DCNN模型利用的潜在特征。该方法在测试数据集上实现了高性能;用于停车位识别的特征与人类的感知基本一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Virtual Commissioning of Machine Vision Applications in Aero Engine Manufacturing Barrier Lyapunov Function Based Output-constrained Control of Nonlinear Euler-Lagrange Systems Visuo-Tactile Recognition of Daily-Life Objects Never Seen or Touched Before Synthesis of Point Memory-Based Adaptive Gain Robust Controllers with Guaranteed $\mathcal{L}_{2}$ Gain Performance for a Class of Uncertain Time-Delay Systems Formation Control of Multiple Mobile Robots with Large Obstacle Avoidance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1