Simulation of Micro-Scale Jet Impingement Heat Transfer

Paul A. Boeschoten, D. Pence, J. Liburdy
{"title":"Simulation of Micro-Scale Jet Impingement Heat Transfer","authors":"Paul A. Boeschoten, D. Pence, J. Liburdy","doi":"10.1115/imece2000-1542","DOIUrl":null,"url":null,"abstract":"\n The heat transfer performance of a micro-scale, axisymmetric, confined jet impinging on a flat surface at high Mach numbers (0.2 to 0.6) and low Reynolds numbers (419 to 1310) was computationally studied. The flow is characterized by Knudsen numbers, based on the jet radius, large enough (0.0013) to warrant slip-flow boundary conditions at the impinging surface. The effects of Mach number, compressibility, and slip-flow on heat transfer results are presented, along with the local Nusselt number distributions, and velocity and temperature fields near the impingement surface. Results for uniform wall heat flux show that the wall temperature decreases with increasing Mach number, with a local minimum at r/D = 0.7. The slip velocity also increases with Mach number with peak values also near r/D = 0.7. The resulting Nusselt number increases with increasing Mach number, and a local maximum in the Nusselt number is observed at r/D = 0.6, not at the centerline. In general, compressibility improves heat transfer due to increased fluid density near the impinging surface. Also, inclusion of slip-velocity increases the rate of heat transfer. However, the accompanying temperature-jump condition at the wall is found to reduce the local heat transfer rate. The net effect of the slip-flow boundary conditions applied in this study was an overall reduction in heat transfer.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The heat transfer performance of a micro-scale, axisymmetric, confined jet impinging on a flat surface at high Mach numbers (0.2 to 0.6) and low Reynolds numbers (419 to 1310) was computationally studied. The flow is characterized by Knudsen numbers, based on the jet radius, large enough (0.0013) to warrant slip-flow boundary conditions at the impinging surface. The effects of Mach number, compressibility, and slip-flow on heat transfer results are presented, along with the local Nusselt number distributions, and velocity and temperature fields near the impingement surface. Results for uniform wall heat flux show that the wall temperature decreases with increasing Mach number, with a local minimum at r/D = 0.7. The slip velocity also increases with Mach number with peak values also near r/D = 0.7. The resulting Nusselt number increases with increasing Mach number, and a local maximum in the Nusselt number is observed at r/D = 0.6, not at the centerline. In general, compressibility improves heat transfer due to increased fluid density near the impinging surface. Also, inclusion of slip-velocity increases the rate of heat transfer. However, the accompanying temperature-jump condition at the wall is found to reduce the local heat transfer rate. The net effect of the slip-flow boundary conditions applied in this study was an overall reduction in heat transfer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微尺度射流冲击传热模拟
对高马赫数(0.2 ~ 0.6)和低雷诺数(419 ~ 1310)条件下微尺度轴对称受限射流撞击平面的换热性能进行了计算研究。射流半径的克努森数(Knudsen number)足够大(0.0013),以保证碰撞表面的滑流边界条件。讨论了马赫数、可压缩性和滑移流对换热结果的影响,以及碰撞表面附近的局部努塞尔数分布和速度场和温度场。均匀壁面热流的结果表明,壁面温度随马赫数的增加而降低,在r/D = 0.7时达到局部最小值。滑移速度也随着马赫数的增加而增加,其峰值也在r/D = 0.7附近。得到的努塞尔数随着马赫数的增加而增加,在r/D = 0.6处出现局部最大值,而不是在中心线处。一般来说,由于碰撞表面附近流体密度的增加,可压缩性改善了传热。此外,滑移速度的加入增加了传热速率。然而,壁面伴随的温度跳变条件降低了局部换热速率。在本研究中应用的滑移流边界条件的净效应是传热的总体减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mass Transfer Process of Gaseous Carbon Dioxide Into Water Jet Through Orifice Mixing System A New Facility for Measurements of Three-Dimensional, Local Subcooled Flow Boiling Heat Flux and Related Critical Heat Flux Numerical Solution of Thermal and Fluid Flow With Phase Change by VOF Method Stacked Microchannel Heat Sinks for Liquid Cooling of Microelectronic Components Some Aspects of Critical-Heat-Flux Enhancement in Tubes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1